BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19726446)

  • 1. Recent de novo origin of human protein-coding genes.
    Knowles DG; McLysaght A
    Genome Res; 2009 Oct; 19(10):1752-9. PubMed ID: 19726446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Genes Arise at a Slow but Steady Rate along the Primate Lineage and Have Been Subject to Incomplete Lineage Sorting.
    Guerzoni D; McLysaght A
    Genome Biol Evol; 2016 Apr; 8(4):1222-32. PubMed ID: 27056411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo origin of VCY2 from autosome to Y-transposed amplicon.
    Cao PR; Wang L; Jiang YC; Yi YS; Qu F; Liu TC; Lv Y
    PLoS One; 2015; 10(3):e0119651. PubMed ID: 25799347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive inactivation of the haploid expressed gene for the sperm-specific endozepine-like peptide (ELP) through primate evolution.
    Ivell R; Pusch W; Balvers M; Valentin M; Walther N; Weinbauer G
    Gene; 2000 Sep; 255(2):335-45. PubMed ID: 11024294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs.
    Xie C; Zhang YE; Chen JY; Liu CJ; Zhou WZ; Li Y; Zhang M; Zhang R; Wei L; Li CY
    PLoS Genet; 2012 Sep; 8(9):e1002942. PubMed ID: 23028352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios.
    Clark AG; Glanowski S; Nielsen R; Thomas PD; Kejariwal A; Todd MA; Tanenbaum DM; Civello D; Lu F; Murphy B; Ferriera S; Wang G; Zheng X; White TJ; Sninsky JJ; Adams MD; Cargill M
    Science; 2003 Dec; 302(5652):1960-3. PubMed ID: 14671302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo origin of protein-coding genes in murine rodents.
    Murphy DN; McLysaght A
    PLoS One; 2012; 7(11):e48650. PubMed ID: 23185269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene.
    Betrán E; Wang W; Jin L; Long M
    Mol Biol Evol; 2002 May; 19(5):654-63. PubMed ID: 11961099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion and divergence of the GH locus between spider monkey and chimpanzee.
    Revol De Mendoza A; Esquivel Escobedo D; Martínez Dávila I; Saldaña H
    Gene; 2004 Jul; 336(2):185-93. PubMed ID: 15246530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution.
    Wetterbom A; Sevov M; Cavelier L; Bergström TF
    J Mol Evol; 2006 Nov; 63(5):682-90. PubMed ID: 17075697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycophorin B and glycophorin E genes arose from the glycophorin A ancestral gene via two duplications during primate evolution.
    Rearden A; Magnet A; Kudo S; Fukuda M
    J Biol Chem; 1993 Jan; 268(3):2260-7. PubMed ID: 8420995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the primate beta-globin gene region: nucleotide sequence of the delta-beta-globin intergenic region of gorilla and phylogenetic relationships between African apes and man.
    Perrin-Pecontal P; Gouy M; Nigon VM; Trabuchet G
    J Mol Evol; 1992 Jan; 34(1):17-30. PubMed ID: 1556740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel class of interspersed LTR elements in primate genomes: structure, genomic distribution, and evolution.
    Liao D; Pavelitz T; Weiner AM
    J Mol Evol; 1998 Jun; 46(6):649-60. PubMed ID: 9608047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species-specific evolution of repeated DNA sequences in great apes.
    Toder R; Grützner F; Haaf T; Bausch E
    Chromosome Res; 2001; 9(6):431-5. PubMed ID: 11592477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.
    Chen JY; Shen QS; Zhou WZ; Peng J; He BZ; Li Y; Liu CJ; Luan X; Ding W; Li S; Chen C; Tan BC; Zhang YE; He A; Li CY
    PLoS Genet; 2015 Jul; 11(7):e1005391. PubMed ID: 26177073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model.
    Hobolth A; Christensen OF; Mailund T; Schierup MH
    PLoS Genet; 2007 Feb; 3(2):e7. PubMed ID: 17319744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo origin of new genes with introns in Plasmodium vivax.
    Yang Z; Huang J
    FEBS Lett; 2011 Feb; 585(4):641-4. PubMed ID: 21241695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic analyses highlight the contribution of pseudogenized protein-coding genes to human lincRNAs.
    Liu WH; Tsai ZT; Tsai HK
    BMC Genomics; 2017 Oct; 18(1):786. PubMed ID: 29037146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the genes encoding carbonic anhydrase I of chimpanzee and gorilla: comparative analysis of 5' flanking erythroid-specific promoter sequences.
    Epperly BR; Bergenham NC; Venta PJ; Tashian RE
    Gene; 1993 Sep; 131(2):249-53. PubMed ID: 8406018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade.
    Page SL; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):14-25. PubMed ID: 11161738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.