These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19726510)

  • 1. Exclusion of West Nile virus superinfection through RNA replication.
    Zou G; Zhang B; Lim PY; Yuan Z; Bernard KA; Shi PY
    J Virol; 2009 Nov; 83(22):11765-76. PubMed ID: 19726510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A positively selected mutation in the WNV 2K peptide confers resistance to superinfection exclusion in vivo.
    Campbell CL; Smith DR; Sanchez-Vargas I; Zhang B; Shi PY; Ebel GD
    Virology; 2014 Sep; 464-465():228-232. PubMed ID: 25104615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and characterization of subgenomic replicons of New York strain of West Nile virus.
    Shi PY; Tilgner M; Lo MK
    Virology; 2002 May; 296(2):219-33. PubMed ID: 12069521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3' untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication.
    Lo MK; Tilgner M; Bernard KA; Shi PY
    J Virol; 2003 Sep; 77(18):10004-14. PubMed ID: 12941911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex.
    Gillespie LK; Hoenen A; Morgan G; Mackenzie JM
    J Virol; 2010 Oct; 84(20):10438-47. PubMed ID: 20686019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential high-throughput assay for screening inhibitors of West Nile virus replication.
    Lo MK; Tilgner M; Shi PY
    J Virol; 2003 Dec; 77(23):12901-6. PubMed ID: 14610212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication.
    Ambrose RL; Mackenzie JM
    J Virol; 2011 Nov; 85(21):11274-82. PubMed ID: 21880777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action.
    Rossi SL; Zhao Q; O'Donnell VK; Mason PW
    Virology; 2005 Jan; 331(2):457-70. PubMed ID: 15629788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evasion of superinfection exclusion and elimination of primary viral RNA by an adapted strain of hepatitis C virus.
    Webster B; Ott M; Greene WC
    J Virol; 2013 Dec; 87(24):13354-69. PubMed ID: 24089557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubella virus-induced superinfection exclusion studied in cells with persisting replicons.
    Claus C; Tzeng WP; Liebert UG; Frey TK
    J Gen Virol; 2007 Oct; 88(Pt 10):2769-2773. PubMed ID: 17872530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superinfection exclusion studies using West Nile virus and Culex flavivirus strains from Argentina.
    Goenaga S; Goenaga J; Boaglio ER; Enria DA; Levis SDC
    Mem Inst Oswaldo Cruz; 2020; 115():e200012. PubMed ID: 32520074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo.
    Rossi SL; Fayzulin R; Dewsbury N; Bourne N; Mason PW
    Virology; 2007 Jul; 364(1):184-95. PubMed ID: 17382364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.
    Martín-Acebes MA; Blázquez AB; Jiménez de Oya N; Escribano-Romero E; Saiz JC
    PLoS One; 2011; 6(9):e24970. PubMed ID: 21949814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication-Defective West Nile Virus with NS1 Deletion as a New Vaccine Platform for Flavivirus.
    Li N; Zhang YN; Deng CL; Shi PY; Yuan ZM; Zhang B
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31189715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of inhibitors of West Nile virus.
    Puig-Basagoiti F; Qing M; Dong H; Zhang B; Zou G; Yuan Z; Shi PY
    Antiviral Res; 2009 Jul; 83(1):71-9. PubMed ID: 19501258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Src family kinase c-Yes is required for maturation of West Nile virus particles.
    Hirsch AJ; Medigeshi GR; Meyers HL; DeFilippis V; Früh K; Briese T; Lipkin WI; Nelson JA
    J Virol; 2005 Sep; 79(18):11943-51. PubMed ID: 16140770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen.
    Gu B; Ouzunov S; Wang L; Mason P; Bourne N; Cuconati A; Block TM
    Antiviral Res; 2006 Jun; 70(2):39-50. PubMed ID: 16724398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system.
    Li W; Ma L; Guo LP; Wang XL; Zhang JW; Bu ZG; Hua RH
    Sci Rep; 2017 Jun; 7(1):3286. PubMed ID: 28607390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.
    Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP
    J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo.
    Van Slyke GA; Ciota AT; Willsey GG; Jaeger J; Shi PY; Kramer LD
    Virology; 2012 May; 427(1):18-24. PubMed ID: 22365326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.