BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19726681)

  • 1. Both ATPase domains of ClpA are critical for processing of stable protein structures.
    Kress W; Mutschler H; Weber-Ban E
    J Biol Chem; 2009 Nov; 284(45):31441-52. PubMed ID: 19726681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide.
    Duran EC; Lucius AL
    Biophys Chem; 2018 Nov; 242():6-14. PubMed ID: 30173103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATPγS competes with ATP for binding at Domain 1 but not Domain 2 during ClpA catalyzed polypeptide translocation.
    Miller JM; Lucius AL
    Biophys Chem; 2014 Jan; 185():58-69. PubMed ID: 24362308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.
    Miller JM; Lin J; Li T; Lucius AL
    J Mol Biol; 2013 Aug; 425(15):2795-812. PubMed ID: 23639359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turned on for degradation: ATPase-independent degradation by ClpP.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2009 Feb; 165(2):118-25. PubMed ID: 19038348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease.
    Zuromski KL; Kim S; Sauer RT; Baker TA
    J Biol Chem; 2021 Dec; 297(6):101407. PubMed ID: 34780718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.
    Jennings LD; Lun DS; Médard M; Licht S
    Biochemistry; 2008 Nov; 47(44):11536-46. PubMed ID: 18839965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes.
    Bewley MC; Graziano V; Griffin K; Flanagan JM
    J Struct Biol; 2006 Feb; 153(2):113-28. PubMed ID: 16406682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease.
    Torres-Delgado A; Kotamarthi HC; Sauer RT; Baker TA
    J Mol Biol; 2020 Aug; 432(17):4908-4921. PubMed ID: 32687854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding.
    Erbse AH; Wagner JN; Truscott KN; Spall SK; Kirstein J; Zeth K; Turgay K; Mogk A; Bukau B; Dougan DA
    FEBS J; 2008 Apr; 275(7):1400-1410. PubMed ID: 18279386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer.
    De Donatis GM; Singh SK; Viswanathan S; Maurizi MR
    J Biol Chem; 2010 Mar; 285(12):8771-81. PubMed ID: 20068042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.
    Hinnerwisch J; Fenton WA; Furtak KJ; Farr GW; Horwich AL
    Cell; 2005 Jul; 121(7):1029-41. PubMed ID: 15989953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease.
    Singh SK; Guo F; Maurizi MR
    Biochemistry; 1999 Nov; 38(45):14906-15. PubMed ID: 10555973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA.
    Guo F; Esser L; Singh SK; Maurizi MR; Xia D
    J Biol Chem; 2002 Nov; 277(48):46753-62. PubMed ID: 12235156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the nucleotide-linked assembly mechanism of E. coli ClpA.
    Duran EC; Lucius AL
    Protein Sci; 2019 Jul; 28(7):1312-1323. PubMed ID: 31054177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease.
    Román-Hernández G; Hou JY; Grant RA; Sauer RT; Baker TA
    Mol Cell; 2011 Jul; 43(2):217-28. PubMed ID: 21777811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time.
    Kress W; Mutschler H; Weber-Ban E
    Biochemistry; 2007 May; 46(21):6183-93. PubMed ID: 17477547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.