BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19726725)

  • 1. Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration.
    Sekirnjak C; Hulse C; Jepson LH; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2009 Dec; 102(6):3260-9. PubMed ID: 19726725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
    Jensen RJ
    Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in physiological properties of rat ganglion cells during retinal degeneration.
    Sekirnjak C; Jepson LH; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2011 May; 105(5):2560-71. PubMed ID: 21389304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late histological and functional changes in the P23H rat retina after photoreceptor loss.
    Kolomiets B; Dubus E; Simonutti M; Rosolen S; Sahel JA; Picaud S
    Neurobiol Dis; 2010 Apr; 38(1):47-58. PubMed ID: 20060471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse.
    Stasheff SF
    J Neurophysiol; 2008 Mar; 99(3):1408-21. PubMed ID: 18216234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subretinal electrical stimulation reveals intact network activity in the blind mouse retina.
    Stutzki H; Helmhold F; Eickenscheidt M; Zeck G
    J Neurophysiol; 2016 Oct; 116(4):1684-1693. PubMed ID: 27486110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina.
    Chan LL; Lee EJ; Humayun MS; Weiland JD
    J Neurophysiol; 2011 Jun; 105(6):2687-97. PubMed ID: 21411561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice.
    Margalit E; Babai N; Luo J; Thoreson WB
    Vis Neurosci; 2011 Mar; 28(2):145-54. PubMed ID: 21463541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes.
    Cho A; Ratliff C; Sampath A; Weiland J
    J Neural Eng; 2016 Apr; 13(2):025001. PubMed ID: 26905177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice.
    Stasheff SF; Shankar M; Andrews MP
    J Neurophysiol; 2011 Jun; 105(6):3002-9. PubMed ID: 21389300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex.
    Cottaris NP; Elfar SD
    J Neural Eng; 2005 Mar; 2(1):S74-90. PubMed ID: 15876658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does not rescue P23H and S334ter rhodopsin transgenic rats from inherited retinal degeneration.
    Ranchon I; LaVail MM; Kotake Y; Anderson RE
    J Neurosci; 2003 Jul; 23(14):6050-7. PubMed ID: 12853423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring light responses of primate retinal ganglion cells using intrinsic electrical signatures.
    Zaidi M; Aggarwal G; Shah NP; Karniol-Tambour O; Goetz G; Madugula SS; Gogliettino AR; Wu EG; Kling A; Brackbill N; Sher A; Litke AM; Chichilnisky EJ
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37433293
    [No Abstract]   [Full Text] [Related]  

  • 15. Microfluidics-Based Subretinal Chemical Neuromodulation of Photoreceptor Degenerated Retinas.
    Rountree CM; Troy JB; Saggere L
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):418-430. PubMed ID: 29351358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherited Photoreceptor Degeneration Causes the Death of Melanopsin-Positive Retinal Ganglion Cells and Increases Their Coexpression of Brn3a.
    García-Ayuso D; Di Pierdomenico J; Esquiva G; Nadal-Nicolás FM; Pinilla I; Cuenca N; Vidal-Sanz M; Agudo-Barriuso M; Villegas-Pérez MP
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4592-604. PubMed ID: 26200499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina.
    Zhu Y; Misra S; Nivison-Smith L; Acosta ML; Fletcher EL; Kalloniatis M
    Vis Neurosci; 2013 May; 30(3):65-75. PubMed ID: 23557623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats.
    Traverso V; Bush RA; Sieving PA; Deretic D
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells.
    Thyagarajan S; van Wyk M; Lehmann K; Löwel S; Feng G; Wässle H
    J Neurosci; 2010 Jun; 30(26):8745-58. PubMed ID: 20592196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats.
    Hanif AM; Kim MK; Thomas JG; Ciavatta VT; Chrenek M; Hetling JR; Pardue MT
    Exp Eye Res; 2016 Aug; 149():75-83. PubMed ID: 27327393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.