These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19726728)

  • 1. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.
    Bo J; Borza V; Seidler RD
    J Neurophysiol; 2009 Nov; 102(5):2744-54. PubMed ID: 19726728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences.
    Bo J; Seidler RD
    J Neurophysiol; 2009 Jun; 101(6):3116-25. PubMed ID: 19357338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
    Langan J; Seidler RD
    Behav Brain Res; 2011 Nov; 225(1):160-8. PubMed ID: 21784106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential working memory correlates for implicit sequence performance in young and older adults.
    Bo J; Jennett S; Seidler RD
    Exp Brain Res; 2012 Sep; 221(4):467-77. PubMed ID: 22836520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2011 Jan; 23(1):11-25. PubMed ID: 20146609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced spatial knowledge of target location eliminates age-related differences in early sensorimotor learning.
    Rajeshkumar L; Trewartha KM
    Exp Brain Res; 2019 Jul; 237(7):1781-1791. PubMed ID: 31049628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of working memory capacity in implicit and explicit sequence learning of children: Differentiating movement speed and accuracy.
    van Abswoude F; Buszard T; van der Kamp J; Steenbergen B
    Hum Mov Sci; 2020 Feb; 69():102556. PubMed ID: 31989949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working memory capacity correlates with implicit serial reaction time task performance.
    Bo J; Jennett S; Seidler RD
    Exp Brain Res; 2011 Sep; 214(1):73-81. PubMed ID: 21809082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuospatial working memory training facilitates visually-aided explicit sequence learning.
    Chan JS; Wu Q; Liang D; Yan JH
    Acta Psychol (Amst); 2015 Oct; 161():145-53. PubMed ID: 26398484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit and implicit motor sequence learning in children and adults; the role of age and visual working memory.
    Jongbloed-Pereboom M; Nijhuis-van der Sanden MWG; Steenbergen B
    Hum Mov Sci; 2019 Apr; 64():1-11. PubMed ID: 30639705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age and synchrony effects in visuospatial working memory.
    Rowe G; Hasher L; Turcotte J
    Q J Exp Psychol (Hove); 2009 Oct; 62(10):1873-80. PubMed ID: 19459136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delays in neural processing during working memory encoding in normal aging.
    Zanto TP; Toy B; Gazzaley A
    Neuropsychologia; 2010 Jan; 48(1):13-25. PubMed ID: 19666036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regular participation in leisure time activities and high cardiovascular fitness improve motor sequence learning in older adults.
    Zwingmann K; Hübner L; Verwey WB; Barnhoorn JS; Godde B; Voelcker-Rehage C
    Psychol Res; 2021 Jun; 85(4):1488-1502. PubMed ID: 32617650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contextual cueing under working memory load: selective interference of visuospatial load with expression of learning.
    Manginelli AA; Langer N; Klose D; Pollmann S
    Atten Percept Psychophys; 2013 Aug; 75(6):1103-17. PubMed ID: 23636949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory effects of pointing and predictive cueing on age-related declines in visuospatial working memory.
    Ouwehand K; van Gog T; Paas F
    Mem Cognit; 2016 Aug; 44(6):950-65. PubMed ID: 27126873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visuospatial function predicts one-week motor skill retention in cognitively intact older adults.
    Lingo VanGilder J; Hengge CR; Duff K; Schaefer SY
    Neurosci Lett; 2018 Jan; 664():139-143. PubMed ID: 29154858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Span, CRUNCH, and beyond: working memory capacity and the aging brain.
    Schneider-Garces NJ; Gordon BA; Brumback-Peltz CR; Shin E; Lee Y; Sutton BP; Maclin EL; Gratton G; Fabiani M
    J Cogn Neurosci; 2010 Apr; 22(4):655-69. PubMed ID: 19320550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.
    Trewartha KM; Garcia A; Wolpert DM; Flanagan JR
    J Neurosci; 2014 Oct; 34(40):13411-21. PubMed ID: 25274819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-span development of visual working memory: when is feature binding difficult?
    Cowan N; Naveh-Benjamin M; Kilb A; Saults JS
    Dev Psychol; 2006 Nov; 42(6):1089-102. PubMed ID: 17087544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.