These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19727)

  • 1. An automatically balancing isolation amplifier for the decoupling of measuring systems with high impedances.
    Mückenhoff K; Luttmann A
    Pflugers Arch; 1977 Jul; 370(1):93-7. PubMed ID: 19727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical application of an active electrode using an operational amplifier.
    Nishimura S; Tomita Y; Horiuchi T
    IEEE Trans Biomed Eng; 1992 Oct; 39(10):1096-9. PubMed ID: 1452176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments.
    Gielen FL; Bergveld P
    Med Biol Eng Comput; 1982 Jan; 20(1):77-83. PubMed ID: 7098563
    [No Abstract]   [Full Text] [Related]  

  • 4. A fast-recovery electrode amplifier for electrophysiology.
    Walker DD; Kimura J
    Electroencephalogr Clin Neurophysiol; 1978 Dec; 45(6):789-92. PubMed ID: 84747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifrequency characteristics of disposable and nondisposable EMG needle electrodes.
    Ackmann JJ; Lomas JN; Hoffmann RG; Wertsch JJ
    Muscle Nerve; 1993 Jun; 16(6):616-23. PubMed ID: 8502259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography.
    Cheng KS; Simske SJ; Isaacson D; Newell JC; Gisser DG
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):60-5. PubMed ID: 2303271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of the characteristics of indwelling intracerebral gold electrodes on the recording of physiological indices of the brain].
    Khon IuV; Iliukhina VA
    Fiziol Zh SSSR Im I M Sechenova; 1981 Feb; 67(2):185-90. PubMed ID: 7215580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in electrical impedance between electrodes permanently implanted into rabbits' midbrain].
    Oliskiewicz W; Cyrkowicz A; Michalak T; Traczyk WZ
    Acta Physiol Pol; 1970; 21(6):821-31. PubMed ID: 5491173
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential automatic zero-adjusting amplifier.
    Broersen B; Van Krevelen F; van Heusden JT; van Heukelom JS
    Rev Sci Instrum; 1979 Jul; 50(7):897-9. PubMed ID: 18699627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical impedance brain scanner: principles and preliminary results of simulation.
    Benabid AL; Balme L; Persat JC; Belleville M; Chirossel JP; Buyle-Bodin M; de Rougemont J; Poupot C
    TIT J Life Sci; 1978; 8(1-2):59-68. PubMed ID: 741464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of impedance properties of metal bioelectrodes].
    Tukshaitov RKh; Garifullin RL
    Biull Eksp Biol Med; 1979 May; 87(5):494-6. PubMed ID: 454835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transistor amplifier for chronic micro-electrode recording.
    Rokushima H; Naka KI; Kido R
    Electroencephalogr Clin Neurophysiol; 1968 Aug; 25(2):183-4. PubMed ID: 4176533
    [No Abstract]   [Full Text] [Related]  

  • 13. A low-cost precision electrode impedance meter.
    Dunseath WJ
    Psychophysiology; 1982 Jan; 19(1):117-9. PubMed ID: 7058234
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: general concepts and hardware.
    Rigaud B; Morucci JP
    Crit Rev Biomed Eng; 1996; 24(4-6):467-597. PubMed ID: 9196886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for producing, in quantity, metal micro-electrodes with a desired taper and impedance.
    Freeman JA
    Electroencephalogr Clin Neurophysiol; 1969 Jun; 26(6):623-6. PubMed ID: 4181988
    [No Abstract]   [Full Text] [Related]  

  • 16. A practical approach to electrode-skin impedance unbalance measurement.
    Spinelli EM; Mayosky MA; Pallás-Areny R
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1451-3. PubMed ID: 16830954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast voltage clamp with automatic compensation for changes of extracellular resistivity.
    Gebhardt U
    Pflugers Arch; 1974 Feb; 347(1):1-7. PubMed ID: 4407441
    [No Abstract]   [Full Text] [Related]  

  • 18. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography.
    Boverman G; Isaacson D; Newell JC; Saulnier GJ; Kao TJ; Amm BC; Wang X; Davenport DM; Chong DH; Sahni R; Ashe JM
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):795-806. PubMed ID: 27295649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. I. Novel capacitative electrode with a wide frequency range for measurements of flash-induced changes of interface potential at the oil-water interface. Mechanical construction and electrical characteristics of the electrode.
    Trissl HW
    Biochim Biophys Acta; 1980; 595(1):82-95. PubMed ID: 7349885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
    Blanche TJ; Spacek MA; Hetke JF; Swindale NV
    J Neurophysiol; 2005 May; 93(5):2987-3000. PubMed ID: 15548620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.