These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 19727027)

  • 1. In vivo alterations in skeletal muscle form and function after disuse atrophy.
    Clark BC
    Med Sci Sports Exerc; 2009 Oct; 41(10):1869-75. PubMed ID: 19727027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disuse-induced preferential loss of the giant protein titin depresses muscle performance via abnormal sarcomeric organization.
    Udaka J; Ohmori S; Terui T; Ohtsuki I; Ishiwata S; Kurihara S; Fukuda N
    J Gen Physiol; 2008 Jan; 131(1):33-41. PubMed ID: 18166625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of muscle immobilization at different lengths on tetrodotoxin-induced disuse atrophy.
    Dupont Salter AC; Richmond FJ; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):209-17. PubMed ID: 14518783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle apoptotic response to denervation, disuse, and aging.
    Siu PM
    Med Sci Sports Exerc; 2009 Oct; 41(10):1876-86. PubMed ID: 19727026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in inorganic phosphate in mouse hindlimb muscles during limb disuse.
    Pathare N; Vandenborne K; Liu M; Stevens JE; Li Y; Frimel TN; Walter GA
    NMR Biomed; 2008 Feb; 21(2):101-10. PubMed ID: 17516466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of muscle size during disuse, disease, and aging.
    Degens H; Alway SE
    Int J Sports Med; 2006 Feb; 27(2):94-9. PubMed ID: 16475053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of skeletal muscle tissue using SELDI-TOF MS: application to disuse atrophy.
    Clarke MS
    Methods Mol Biol; 2012; 818():131-41. PubMed ID: 22083821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats.
    Dupont Salter AC; Richmond FJ; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):218-26. PubMed ID: 14518784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo.
    Alzghoul MB; Gerrard D; Watkins BA; Hannon K
    FASEB J; 2004 Jan; 18(1):221-3. PubMed ID: 14597562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of tail-suspension and sciatic nerve crush on the musculoskeletal system in young-adult mice.
    Hanson AM; Ferguson VL; Simske SJ; Cannon CM; Stodieck lS
    Biomed Sci Instrum; 2005; 41():92-6. PubMed ID: 15850088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of muscle atrophy: wasting away from the outside in: an introduction.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1856-9. PubMed ID: 19727029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy.
    Clark BC; Fernhall B; Ploutz-Snyder LL
    J Appl Physiol (1985); 2006 Jul; 101(1):256-63. PubMed ID: 16514004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Newton's force as countermeasure for disuse atrophy.
    Rennie MJ; Phillips SM; Richter EA
    J Appl Physiol (1985); 2009 Jul; 107(1):6-7. PubMed ID: 19443745
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy.
    Clark BC; Manini TM; Bolanowski SJ; Ploutz-Snyder LL
    J Appl Physiol (1985); 2006 Jul; 101(1):264-72. PubMed ID: 16514003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromuscular adaptations during 30 days of cast-immobilization and head-down bedrest.
    Jaweed MM; Grana EA; Glennon TP; Monga TN; Mirabi B
    J Gravit Physiol; 1995; 2(1):P72-3. PubMed ID: 11538940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy.
    Martin KS; Blemker SS; Peirce SM
    J Appl Physiol (1985); 2015 May; 118(10):1299-309. PubMed ID: 25722379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.