These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 19727029)

  • 41. Urocortin II treatment reduces skeletal muscle mass and function loss during atrophy and increases nonatrophying skeletal muscle mass and function.
    Hinkle RT; Donnelly E; Cody DB; Bauer MB; Isfort RJ
    Endocrinology; 2003 Nov; 144(11):4939-46. PubMed ID: 12960070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscle characteristics in patients with chronic systemic inflammation.
    Beenakker KG; Duijnisveld BJ; Van Der Linden HM; Visser CP; Westendorp RG; Butler-Brown G; Nelissen RG; Maier AB
    Muscle Nerve; 2012 Aug; 46(2):204-9. PubMed ID: 22806369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The molecular basis of skeletal muscle atrophy.
    Jackman RW; Kandarian SC
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C834-43. PubMed ID: 15355854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of ATF4 in skeletal muscle atrophy.
    Adams CM; Ebert SM; Dyle MC
    Curr Opin Clin Nutr Metab Care; 2017 May; 20(3):164-168. PubMed ID: 28376050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress and disuse muscle atrophy.
    Powers SK; Kavazis AN; McClung JM
    J Appl Physiol (1985); 2007 Jun; 102(6):2389-97. PubMed ID: 17289908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Daily heat treatment maintains mitochondrial function and attenuates atrophy in human skeletal muscle subjected to immobilization.
    Hafen PS; Abbott K; Bowden J; Lopiano R; Hancock CR; Hyldahl RD
    J Appl Physiol (1985); 2019 Jul; 127(1):47-57. PubMed ID: 31046520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilization effects in young and older adults.
    Urso ML; Clarkson PM; Price TB
    Eur J Appl Physiol; 2006 Mar; 96(5):564-71. PubMed ID: 16369818
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
    Hyatt H; Deminice R; Yoshihara T; Powers SK
    Arch Biochem Biophys; 2019 Feb; 662():49-60. PubMed ID: 30452895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy.
    Mahmassani ZS; Reidy PT; McKenzie AI; Stubben C; Howard MT; Drummond MJ
    J Appl Physiol (1985); 2019 Apr; 126(4):894-902. PubMed ID: 30605403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nuclear factor-kappa B signaling in skeletal muscle atrophy.
    Li H; Malhotra S; Kumar A
    J Mol Med (Berl); 2008 Oct; 86(10):1113-26. PubMed ID: 18574572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.
    Berdeaux R; Stewart R
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E1-17. PubMed ID: 22354781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytokine Signaling in Skeletal Muscle Wasting.
    Zhou J; Liu B; Liang C; Li Y; Song YH
    Trends Endocrinol Metab; 2016 May; 27(5):335-347. PubMed ID: 27025788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signaling in muscle atrophy and hypertrophy.
    Sandri M
    Physiology (Bethesda); 2008 Jun; 23():160-70. PubMed ID: 18556469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular mechanisms and treatment options for muscle wasting diseases.
    Rüegg MA; Glass DJ
    Annu Rev Pharmacol Toxicol; 2011; 51():373-95. PubMed ID: 20936944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury.
    Howard EE; Pasiakos SM; Fussell MA; Rodriguez NR
    Adv Nutr; 2020 Jul; 11(4):989-1001. PubMed ID: 32167129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutritional Considerations in Preventing Muscle Atrophy.
    Cretoiu SM; Zugravu CA
    Adv Exp Med Biol; 2018; 1088():497-528. PubMed ID: 30390267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Weak by the machines: muscle motor protein dysfunction - a side effect of intensive care unit treatment.
    Friedrich O; Diermeier S; Larsson L
    Acta Physiol (Oxf); 2018 Jan; 222(1):. PubMed ID: 28387014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle Changes During Atrophy.
    Dumitru A; Radu BM; Radu M; Cretoiu SM
    Adv Exp Med Biol; 2018; 1088():73-92. PubMed ID: 30390248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myonuclear domains in muscle adaptation and disease.
    Allen DL; Roy RR; Edgerton VR
    Muscle Nerve; 1999 Oct; 22(10):1350-60. PubMed ID: 10487900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.