BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19727493)

  • 1. Formation of naproxen-polylactic acid nanoparticles from supercritical solutions and their characterization in the aerosol phase.
    Gadermann M; Kular S; Al-Marzouqi AH; Signorell R
    Phys Chem Chem Phys; 2009 Sep; 11(36):7861-8. PubMed ID: 19727493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior of ketoprofen-poly(lactic acid) drug particles formed by rapid expansion of supercritical solutions.
    Imran ul-haq M; Chasovskikh E; Signorell R
    Langmuir; 2010 Sep; 26(18):14951-7. PubMed ID: 20795658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and evaluations in vitro of oxaliplatin polylactic acid nanoparticles.
    Cui Z; Sun Y; Liu X; Ju F; Chen Q; Gao W; Wei H
    Artif Cells Nanomed Biotechnol; 2013 Aug; 41(4):227-31. PubMed ID: 23305166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles.
    Javadzadeh Y; Ahadi F; Davaran S; Mohammadi G; Sabzevari A; Adibkia K
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):498-502. PubMed ID: 20719477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel.
    Lee LY; Wang CH; Smith KA
    J Control Release; 2008 Jan; 125(2):96-106. PubMed ID: 18054107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.
    Cheng YS; Yazzie D; Gao J; Muggli D; Etter J; Rosenthal GJ
    J Aerosol Med; 2003; 16(1):65-73. PubMed ID: 12737686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naproxen-eudragit RS100 nanoparticles: preparation and physicochemical characterization.
    Adibkia K; Javadzadeh Y; Dastmalchi S; Mohammadi G; Niri FK; Alaei-Beirami M
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):155-9. PubMed ID: 21130612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering.
    Shyjumon I; Rappolt M; Sartori B; Amenitsch H; Laggner P
    Rev Sci Instrum; 2008 Apr; 79(4):043905. PubMed ID: 18447533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet.
    Enayati M; Ahmad Z; Stride E; Edirisinghe M
    Curr Pharm Biotechnol; 2009 Sep; 10(6):600-8. PubMed ID: 19619122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, in vitro characterization and in vivo release of naproxen loaded in poly-caprolactone nanoparticles.
    Rodrigues MR; Lanzarini CM; Ricci-Junior E
    Pharm Dev Technol; 2011 Feb; 16(1):12-21. PubMed ID: 20001271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size.
    Hao J; Whitaker MJ; Wong B; Serhatkulu G; Shakesheff KM; Howdle SM
    J Pharm Sci; 2004 Apr; 93(4):1083-90. PubMed ID: 14999744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization.
    Gao X; Zhang X; Zhang X; Wang Y; Sun L; Li C
    J Pharm Pharmacol; 2011 Jun; 63(6):757-64. PubMed ID: 21585372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the RESS process for producing beclomethasone-17,21-dipropionate particles suitable for pulmonary delivery.
    Charpentier PA; Jia M; Lucky RA
    AAPS PharmSciTech; 2008; 9(1):39-46. PubMed ID: 18446459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery.
    Beck-Broichsitter M; Schweiger C; Schmehl T; Gessler T; Seeger W; Kissel T
    J Control Release; 2012 Mar; 158(2):329-35. PubMed ID: 22063006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.
    Li X; Vogt FG; Hayes D; Mansour HM
    Eur J Pharm Sci; 2014 Feb; 52():191-205. PubMed ID: 24215736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.