These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1972782)

  • 21. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses.
    Weisskopf MG; Nicoll RA
    Nature; 1995 Jul; 376(6537):256-9. PubMed ID: 7617037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice.
    Hanse E; Gustafsson B
    J Neurosci; 1994 Aug; 14(8):5028-34. PubMed ID: 7913959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells.
    Regehr WG; Tank DW
    J Neurosci; 1992 Nov; 12(11):4202-23. PubMed ID: 1359030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Failure to reverse long-term potentiation by coupling sustained presynaptic activity and N-methyl-D-aspartate receptor blockade.
    Goldman RS; Chavez-Noriega LE; Stevens CF
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7165-9. PubMed ID: 1976253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus.
    Chetkovich DM; Gray R; Johnston D; Sweatt JD
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6467-71. PubMed ID: 1677768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMDA receptor dependence of the input specific NMDA receptor-independent LTP in the hippocampal CA1 region.
    Pananceau M; Gustafsson B
    Brain Res; 1997 Mar; 752(1-2):255-60. PubMed ID: 9106465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists.
    Harris EW; Cotman CW
    Neurosci Lett; 1986 Sep; 70(1):132-7. PubMed ID: 3022192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of N-methyl-D-aspartate receptors in the generation of short-term potentiation in the rat hippocampus.
    Anwyl R; Mulkeen D; Rowan MJ
    Brain Res; 1989 Nov; 503(1):148-51. PubMed ID: 2575432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular demonstration of an N-methyl-D-aspartate receptor mediated component of synaptic transmission in the rat hippocampus.
    Herron CE; Lester RA; Coan EJ; Collingridge GL
    Neurosci Lett; 1985 Sep; 60(1):19-23. PubMed ID: 2997672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation.
    Perkel DJ; Petrozzino JJ; Nicoll RA; Connor JA
    Neuron; 1993 Nov; 11(5):817-23. PubMed ID: 7902109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The NMDA receptor-mediated components of responses evoked by patterned stimulation are not increased by long-term potentiation.
    Muller D; Larson J; Lynch G
    Brain Res; 1989 Jan; 477(1-2):396-9. PubMed ID: 2539236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of NMDA receptor antagonist APV on tetanic stimulation induced and calcium induced potentiation.
    Grover LM; Teyler TJ
    Neurosci Lett; 1990 Jun; 113(3):309-14. PubMed ID: 1974337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-synaptic depolarization in induction of long-term potentiation in the CA1 hippocampus.
    Yoshioka N; Sakurai M
    Neuroreport; 1995 Jan; 6(2):333-6. PubMed ID: 7756622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium.
    Huang YY; Wigström H; Gustafsson B
    Neuroscience; 1987 Jul; 22(1):9-16. PubMed ID: 2888050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes.
    Holmes WR; Levy WB
    J Neurophysiol; 1990 May; 63(5):1148-68. PubMed ID: 2162921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of D-2 amino-5-phosphonopentanoate and nifedipine on postsynaptic calcium changes associated with long-term potentiation in hippocampal CA1 area.
    Matias CM; Dionísio JC; Arif M; Quinta-Ferreira ME
    Brain Res; 2003 Jun; 976(1):90-9. PubMed ID: 12763626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kindling-like stimulus patterns induce epileptiform discharges in the guinea pig in vitro hippocampus.
    Slater NT; Stelzer A; Galvan M
    Neurosci Lett; 1985 Sep; 60(1):25-31. PubMed ID: 2865705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro.
    Davis S; Butcher SP; Morris RG
    J Neurosci; 1992 Jan; 12(1):21-34. PubMed ID: 1345945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A synaptic potential following single volleys in the hippocampal CA1 region possibly involved in the induction of long-lasting potentiation.
    Wigström H; Gustafsson B; Huang YY
    Acta Physiol Scand; 1985 Jul; 124(3):475-8. PubMed ID: 2864779
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.