BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19727923)

  • 21. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships.
    Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B
    Chem Biol Interact; 2003 Feb; 143-144():559-82. PubMed ID: 12604242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain.
    Toplak M; Brunner J; Tabib CR; Macheroux P
    FEBS J; 2019 Sep; 286(18):3611-3628. PubMed ID: 31081204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins.
    Persson B; Zigler JS; Jörnvall H
    Eur J Biochem; 1994 Nov; 226(1):15-22. PubMed ID: 7957243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and overexpression of Lactobacillus helveticus D-lactate dehydrogenase gene in Escherichia coli.
    Kochhar S; Hottinger H; Chuard N; Taylor PG; Atkinson T; Scawen MD; Nicholls DJ
    Eur J Biochem; 1992 Sep; 208(3):799-805. PubMed ID: 1396685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus.
    Zhu L; Xu X; Wang L; Dong H; Yu B; Ma Y
    Appl Environ Microbiol; 2015 Sep; 81(18):6294-301. PubMed ID: 26150461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.
    Zhang J; Gong G; Wang X; Zhang H; Tian W
    IET Syst Biol; 2015 Aug; 9(4):172-9. PubMed ID: 26243834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from
    Quaye JA; Gadda G
    Biochemistry; 2020 Dec; 59(51):4833-4844. PubMed ID: 33301690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships amongst some bacterial and yeast lactate and mandelate dehydrogenases.
    Fewson CA; Baker DP; Chalmers RM; Keen JN; Hamilton ID; Scott AJ; Yasin M
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1345-52. PubMed ID: 8360626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase.
    Vinals C; Depiereux E; Feytmans E
    Biochem Biophys Res Commun; 1993 Apr; 192(1):182-8. PubMed ID: 8476420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity.
    Ruckenstuhl C; Eidenberger A; Lang S; Turnowsky F
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1197-201. PubMed ID: 16246080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of putative mammalian D-lactate dehydrogenase enzymes.
    Flick MJ; Konieczny SF
    Biochem Biophys Res Commun; 2002 Jul; 295(4):910-6. PubMed ID: 12127981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways.
    Engqvist M; Drincovich MF; Flügge UI; Maurino VG
    J Biol Chem; 2009 Sep; 284(37):25026-37. PubMed ID: 19586914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein.
    Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV
    mBio; 2015 May; 6(3):e00519-15. PubMed ID: 25944861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel oxidoreductase family sharing a conserved FAD-binding domain.
    Fraaije MW; Van Berkel WJ; Benen JA; Visser J; Mattevi A
    Trends Biochem Sci; 1998 Jun; 23(6):206-7. PubMed ID: 9644973
    [No Abstract]   [Full Text] [Related]  

  • 35. Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava.
    Kang BS; Kim YM
    J Bacteriol; 1999 Sep; 181(18):5581-90. PubMed ID: 10482497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of D-lactate dehydrogenase from Aquifex aeolicus complexed with NAD(+) and lactic acid (or pyruvate).
    Antonyuk SV; Strange RW; Ellis MJ; Bessho Y; Kuramitsu S; Inoue Y; Yokoyama S; Hasnain SS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1209-13. PubMed ID: 20054113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.
    Becker-Kettern J; Paczia N; Conrotte JF; Kay DP; Guignard C; Jung PP; Linster CL
    J Biol Chem; 2016 Mar; 291(12):6036-58. PubMed ID: 26774271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
    Sheng B; Xu J; Zhang Y; Jiang T; Deng S; Kong J; Gao C; Ma C; Xu P
    Appl Environ Microbiol; 2015 Jun; 81(12):4098-110. PubMed ID: 25862219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A phylogenomic analysis of the shikimate dehydrogenases reveals broadscale functional diversification and identifies one functionally distinct subclass.
    Singh S; Stavrinides J; Christendat D; Guttman DS
    Mol Biol Evol; 2008 Oct; 25(10):2221-32. PubMed ID: 18669580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.
    Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K
    Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.