These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19728362)

  • 1. Viral structural transition mechanisms revealed by multiscale molecular dynamics/order parameter extrapolation simulation.
    Miao Y; Ortoleva PJ
    Biopolymers; 2010 Jan; 93(1):61-73. PubMed ID: 19728362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-atom multiscale simulation of cowpea chlorotic mottle virus capsid swelling.
    Miao Y; Johnson JE; Ortoleva PJ
    J Phys Chem B; 2010 Sep; 114(34):11181-95. PubMed ID: 20695471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics/order parameter extrapolation for bionanosystem simulations.
    Miao Y; Ortoleva PJ
    J Comput Chem; 2009 Feb; 30(3):423-37. PubMed ID: 18636559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring structural transitions in icosahedral virus protein cages by site-directed spin labeling.
    Usselman RJ; Walter ED; Willits D; Douglas T; Young M; Singel DJ
    J Am Chem Soc; 2011 Mar; 133(12):4156-9. PubMed ID: 21388197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
    Tama F; Brooks CL
    J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viral structural transitions: an all-atom multiscale theory.
    Miao Y; Ortoleva PJ
    J Chem Phys; 2006 Dec; 125(21):214901. PubMed ID: 17166043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space warping order parameters and symmetry: application to multiscale simulation of macromolecular assemblies.
    Singharoy A; Joshi H; Miao Y; Ortoleva PJ
    J Phys Chem B; 2012 Jul; 116(29):8423-34. PubMed ID: 22356532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoindentation of virus capsids in a molecular model.
    Cieplak M; Robbins MO
    J Chem Phys; 2010 Jan; 132(1):015101. PubMed ID: 20078182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled encapsulation of multiple proteins in virus capsids.
    Minten IJ; Hendriks LJ; Nolte RJ; Cornelissen JJ
    J Am Chem Soc; 2009 Dec; 131(49):17771-3. PubMed ID: 19995072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the RNA of the cowpea chlorotic mottle virus be released through a channel by means of free diffusion? A test in silico.
    Isea R; Aponte C; Cipriani R
    Biophys Chem; 2004 Feb; 107(2):101-6. PubMed ID: 14962592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between the Molecular Components of the Cowpea Chlorotic Mottle Virus Investigated by Molecular Dynamics Simulations.
    Chen J; Lansac Y; Tresset G
    J Phys Chem B; 2018 Oct; 122(41):9490-9498. PubMed ID: 30289255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Form, symmetry and packing of biomacromolecules. IV. Filled capsids of cowpea, tobacco, MS2 and pariacoto RNA viruses.
    Janner A
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):517-20. PubMed ID: 22011467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy.
    Klem MT; Willits D; Young M; Douglas T
    J Am Chem Soc; 2003 Sep; 125(36):10806-7. PubMed ID: 12952458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Initial Steps of Salt-Stable Cowpea Chlorotic Mottle Virus Capsid Assembly with Atomistic Force Fields.
    Antal Z; Szoverfi J; Fejer SN
    J Chem Inf Model; 2017 Apr; 57(4):910-917. PubMed ID: 28383276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules.
    Minten IJ; Nolte RJ; Cornelissen JJ
    Macromol Biosci; 2010 May; 10(5):539-45. PubMed ID: 20491131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal nanostructure: an order parameter multiscale ensemble approach.
    Cheluvaraja S; Ortoleva P
    J Chem Phys; 2010 Feb; 132(7):075102. PubMed ID: 20170252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic virus capsids.
    Konecny R; Trylska J; Tama F; Zhang D; Baker NA; Brooks CL; McCammon JA
    Biopolymers; 2006 Jun; 82(2):106-20. PubMed ID: 16278831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.