These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 19728699)
1. Excited-state-proton-transfer-triggered fluorescence resonance energy transfer: from 2-naphthylamine to phenosafranin. Ghosh D; Bose D; Sarkar D; Chattopadhyay N J Phys Chem A; 2009 Oct; 113(39):10460-5. PubMed ID: 19728699 [TBL] [Abstract][Full Text] [Related]
2. Basic principles of fluorescence and energy transfer. Morrison LE Methods Mol Biol; 2008; 429():3-19. PubMed ID: 18695955 [TBL] [Abstract][Full Text] [Related]
3. Competition between energy and proton transfer in ultrafast excited-state dynamics of an oligomeric fluorescent protein red Kaede. Hosoi H; Mizuno H; Miyawaki A; Tahara T J Phys Chem B; 2006 Nov; 110(45):22853-60. PubMed ID: 17092037 [TBL] [Abstract][Full Text] [Related]
4. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
5. Three-state 2',7'-difluorofluorescein excited-state proton transfer reactions in moderately acidic and very acidic media. Orte A; Talavera EM; Maçanita AL; Orte JC; Alvarez-Pez JM J Phys Chem A; 2005 Oct; 109(39):8705-18. PubMed ID: 16834272 [TBL] [Abstract][Full Text] [Related]
6. Excited state intramolecular proton transfer in Schiff bases. Decay of the locally excited enol state observed by femtosecond resolved fluorescence. Rodríguez-Córdoba W; Zugazagoitia JS; Collado-Fregoso E; Peon J J Phys Chem A; 2007 Jul; 111(28):6241-7. PubMed ID: 17583330 [TBL] [Abstract][Full Text] [Related]
7. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Li J; Mei F; Li WY; He XW; Zhang YK Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):811-7. PubMed ID: 18023245 [TBL] [Abstract][Full Text] [Related]
8. Implication toward a simple strategy to generate efficiency-tunable fluorescence resonance energy transfer emission: intertwining medium-polarity-sensitive intramolecular charge transfer emission to fluorescence resonance energy transfer. Paul BK; Samanta A; Guchhait N J Phys Chem A; 2010 May; 114(20):6097-102. PubMed ID: 20443538 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer from a bio-active imidazole derivative 2-(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol to a bioactive indoloquinolizine system. Jayabharathi J; Thanikachalam V; Perumal MV; Srinivasan N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):236-44. PubMed ID: 21458363 [TBL] [Abstract][Full Text] [Related]
11. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019 [TBL] [Abstract][Full Text] [Related]
13. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye. Sadhu S; Patra A Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556 [TBL] [Abstract][Full Text] [Related]
14. Beyond Förster resonance energy transfer in biological and nanoscale systems. Beljonne D; Curutchet C; Scholes GD; Silbey RJ J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333 [TBL] [Abstract][Full Text] [Related]
15. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
16. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins. Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. Hsieh CC; Cheng YM; Hsu CJ; Chen KY; Chou PT J Phys Chem A; 2008 Sep; 112(36):8323-32. PubMed ID: 18710203 [TBL] [Abstract][Full Text] [Related]
18. Modulation of excited-state proton transfer of 2-(2'-hydroxyphenyl)benzimidazole in a macrocyclic cucurbit[7]uril host cavity: dual emission behavior and pK(a) shift. Shaikh M; Dutta Choudhury S; Mohanty J; Bhasikuttan AC; Nau WM; Pal H Chemistry; 2009 Nov; 15(45):12362-70. PubMed ID: 19777507 [TBL] [Abstract][Full Text] [Related]
19. FRET and competing processes between conjugated polymer and dye substituted DNA strands: a comparative study of probe selection in DNA detection. Al Attar HA; Monkman AP Biomacromolecules; 2009 May; 10(5):1077-83. PubMed ID: 19334782 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]