These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19728866)

  • 1. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network.
    Linghu B; Snitkin ES; Hu Z; Xia Y; Delisi C
    Genome Biol; 2009; 10(9):R91. PubMed ID: 19728866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease.
    Talwar P; Silla Y; Grover S; Gupta M; Agarwal R; Kushwaha S; Kukreti R
    BMC Genomics; 2014 Mar; 15(1):199. PubMed ID: 24628925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPS: Identification of disease genes by rank aggregation of multi-genomic scoring schemes.
    Meshkin A; Shakery A; Masoudi-Nejad A
    Genomics; 2019 Jul; 111(4):612-618. PubMed ID: 29604342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering cancer genes by integrating network and functional properties.
    Li L; Zhang K; Lee J; Cordes S; Davis DP; Tang Z
    BMC Med Genomics; 2009 Sep; 2():61. PubMed ID: 19765316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based global inference of human disease genes.
    Wu X; Jiang R; Zhang MQ; Li S
    Mol Syst Biol; 2008; 4():189. PubMed ID: 18463613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degrees of separation as a statistical tool for evaluating candidate genes.
    Nelson RM; Pettersson ME
    Comput Biol Med; 2014 Dec; 55():49-52. PubMed ID: 25450218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new era in functional genomics screens.
    Przybyla L; Gilbert LA
    Nat Rev Genet; 2022 Feb; 23(2):89-103. PubMed ID: 34545248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregated network centrality shows non-random structure of genomic and proteomic networks.
    Halder AK; Denkiewicz M; Sengupta K; Basu S; Plewczynski D
    Methods; 2020 Oct; 181-182():5-14. PubMed ID: 31740366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enriching Human Interactome with Functional Mutations to Detect High-Impact Network Modules Underlying Complex Diseases.
    Cui H; Srinivasan S; Korkin D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies.
    Hou L; Chen M; Zhang CK; Cho J; Zhao H
    Hum Mol Genet; 2014 May; 23(10):2780-90. PubMed ID: 24381306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting disease-related subnetworks for type 1 diabetes using a new network activity score.
    Gao S; Jia S; Hessner MJ; Wang X
    OMICS; 2012 Oct; 16(10):566-78. PubMed ID: 22917479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring Gene-Disease Association by an Integrative Analysis of eQTL Genome-Wide Association Study and Protein-Protein Interaction Data.
    Wang J; Zheng J; Wang Z; Li H; Deng M
    Hum Hered; 2018; 83(3):117-129. PubMed ID: 30669151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks.
    Jin T; Rehani P; Ying M; Huang J; Liu S; Roussos P; Wang D
    Genome Med; 2021 May; 13(1):95. PubMed ID: 34044854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pinpointing disease genes through phenomic and genomic data fusion.
    Jiang R; Wu M; Li L
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S3. PubMed ID: 25708473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
    Liu N; Xu J; Liu H; Zhang S; Li M; Zhou Y; Qin W; Li MJ; Yu C;
    PLoS Genet; 2021 Feb; 17(2):e1009363. PubMed ID: 33630843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.