These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 19728866)

  • 21. Asthma genetics and genomics 2009.
    Weiss ST; Raby BA; Rogers A
    Curr Opin Genet Dev; 2009 Jun; 19(3):279-82. PubMed ID: 19481925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes.
    Chu TT; Liu Y
    J Hum Genet; 2010 May; 55(5):285-92. PubMed ID: 20339380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations.
    Chimusa ER; Mbiyavanga M; Mazandu GK; Mulder NJ
    Bioinformatics; 2016 Feb; 32(4):549-56. PubMed ID: 26508762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomics of Alzheimer's disease: Value of high-throughput genomic technologies to dissect its etiology.
    Tosto G; Reitz C
    Mol Cell Probes; 2016 Dec; 30(6):397-403. PubMed ID: 27618776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cocaine'omics: Genome-wide and transcriptome-wide analyses provide biological insight into cocaine use and dependence.
    Huggett SB; Stallings MC
    Addict Biol; 2020 Mar; 25(2):e12719. PubMed ID: 30734435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory mouse models for the human genome-wide associations.
    Kitsios GD; Tangri N; Castaldi PJ; Ioannidis JP
    PLoS One; 2010 Nov; 5(11):e13782. PubMed ID: 21072174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Genome-wide association study on complex diseases: genetic statistical issues].
    Yan WL
    Yi Chuan; 2008 May; 30(5):543-9. PubMed ID: 18487142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strengthening the reporting of genetic risk prediction studies: the GRIPS statement.
    Janssens AC; Ioannidis JP; van Duijn CM; Little J; Khoury MJ;
    Eur J Clin Invest; 2011 Sep; 41(9):1004-9. PubMed ID: 21434891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying disease-causal genes using Semantic Web-based representation of integrated genomic and phenomic knowledge.
    Gudivada RC; Qu XA; Chen J; Jegga AG; Neumann EK; Aronow BJ
    J Biomed Inform; 2008 Oct; 41(5):717-29. PubMed ID: 18755295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From association to mechanism in complex disease genetics: the role of the 3D genome.
    Fu Y; Tessneer KL; Li C; Gaffney PM
    Arthritis Res Ther; 2018 Sep; 20(1):216. PubMed ID: 30268153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.
    Guney E; Oliva B
    PLoS One; 2014; 9(4):e94686. PubMed ID: 24733074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers.
    Hsiao TH; Chiu YC; Hsu PY; Lu TP; Lai LC; Tsai MH; Huang TH; Chuang EY; Chen Y
    Sci Rep; 2016 Mar; 6():23035. PubMed ID: 26972162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies.
    Teber ET; Liu JY; Ballouz S; Fatkin D; Wouters MA
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S69. PubMed ID: 19208173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of genetic predisposition to Alzheimer's disease and related sex disparities.
    Nazarian A; Yashin AI; Kulminski AM
    Alzheimers Res Ther; 2019 Jan; 11(1):5. PubMed ID: 30636644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterising and predicting haploinsufficiency in the human genome.
    Huang N; Lee I; Marcotte EM; Hurles ME
    PLoS Genet; 2010 Oct; 6(10):e1001154. PubMed ID: 20976243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of genome-wide association studies for cancer research and drug repositioning.
    Zhang J; Jiang K; Lv L; Wang H; Shen Z; Gao Z; Wang B; Yang Y; Ye Y; Wang S
    PLoS One; 2015; 10(3):e0116477. PubMed ID: 25803826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prioritization of causal genes for coronary artery disease based on cumulative evidence from experimental and in silico studies.
    Shadrina AS; Shashkova TI; Torgasheva AA; Sharapov SZ; Klarić L; Pakhomov ED; Alexeev DG; Wilson JF; Tsepilov YA; Joshi PK; Aulchenko YS
    Sci Rep; 2020 Jun; 10(1):10486. PubMed ID: 32591598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.