BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19729018)

  • 1. Cardiac T-type Ca(2+) channels in the heart.
    Ono K; Iijima T
    J Mol Cell Cardiol; 2010 Jan; 48(1):65-70. PubMed ID: 19729018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice.
    Chiang CS; Huang CH; Chieng H; Chang YT; Chang D; Chen JJ; Chen YC; Chen YH; Shin HS; Campbell KP; Chen CC
    Circ Res; 2009 Feb; 104(4):522-30. PubMed ID: 19122177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-type Ca2+ channel blockade prevents sudden death in mice with heart failure.
    Kinoshita H; Kuwahara K; Takano M; Arai Y; Kuwabara Y; Yasuno S; Nakagawa Y; Nakanishi M; Harada M; Fujiwara M; Murakami M; Ueshima K; Nakao K
    Circulation; 2009 Sep; 120(9):743-52. PubMed ID: 19687356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-type Ca(2+) current in ventricular cardiomyocytes.
    Benitah JP; Alvarez JL; Gómez AM
    J Mol Cell Cardiol; 2010 Jan; 48(1):26-36. PubMed ID: 19660468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factors Csx/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart.
    Wang Y; Morishima M; Zheng M; Uchino T; Mannen K; Takahashi A; Nakaya Y; Komuro I; Ono K
    J Mol Cell Cardiol; 2007 Jun; 42(6):1045-53. PubMed ID: 17498735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of T-type Ca2+ channels in the heart.
    Vassort G; Talavera K; Alvarez JL
    Cell Calcium; 2006 Aug; 40(2):205-20. PubMed ID: 16766028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Ca(2+)- and PKC-dependent upregulation of T-type Ca(2+) channels in LPC-stimulated cardiomyocytes.
    Zheng M; Wang Y; Kang L; Shimaoka T; Marni F; Ono K
    J Mol Cell Cardiol; 2010 Jan; 48(1):131-9. PubMed ID: 19744490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes.
    Lalevée N; Rebsamen MC; Barrère-Lemaire S; Perrier E; Nargeot J; Bénitah JP; Rossier MF
    Cardiovasc Res; 2005 Aug; 67(2):216-24. PubMed ID: 15919070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression.
    Takebayashi S; Li Y; Kaku T; Inagaki S; Hashimoto Y; Kimura K; Miyamoto S; Hadama T; Ono K
    Biochem Biophys Res Commun; 2006 Jun; 345(2):766-73. PubMed ID: 16701562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers.
    Horiba M; Muto T; Ueda N; Opthof T; Miwa K; Hojo M; Lee JK; Kamiya K; Kodama I; Yasui K
    Life Sci; 2008 Mar; 82(11-12):554-60. PubMed ID: 18275974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NRSF regulates the developmental and hypertrophic changes of HCN4 transcription in rat cardiac myocytes.
    Kuratomi S; Kuratomi A; Kuwahara K; Ishii TM; Nakao K; Saito Y; Takano M
    Biochem Biophys Res Commun; 2007 Feb; 353(1):67-73. PubMed ID: 17173866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRPC channels as effectors of cardiac hypertrophy.
    Eder P; Molkentin JD
    Circ Res; 2011 Jan; 108(2):265-72. PubMed ID: 21252153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.
    Nakagawa Y; Kuwahara K; Harada M; Takahashi N; Yasuno S; Adachi Y; Kawakami R; Nakanishi M; Tanimoto K; Usami S; Kinoshita H; Saito Y; Nakao K
    J Mol Cell Cardiol; 2006 Dec; 41(6):1010-22. PubMed ID: 17011572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels.
    Fischmeister R; Castro L; Abi-Gerges A; Rochais F; Vandecasteele G
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):136-43. PubMed ID: 15927494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state.
    Hool LC
    Heart Lung Circ; 2009 Feb; 18(1):3-10. PubMed ID: 19119068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway.
    Yatani A; Honda R; Tymitz KM; Lalli MJ; Molkentin JD
    J Mol Cell Cardiol; 2001 Feb; 33(2):249-59. PubMed ID: 11162130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cardiac function involving the T-type Ca2+ channel].
    Ono K; Lee TS; Kaku T
    Clin Calcium; 2002 Jun; 12(6):810-6. PubMed ID: 15775371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.