These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19729186)
1. Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Dontsova KM; Pennington JC; Hayes C; Simunek J; Williford CW Chemosphere; 2009 Oct; 77(4):597-603. PubMed ID: 19729186 [TBL] [Abstract][Full Text] [Related]
2. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical pilot scale study for reduction of 2,4-DNT. Doppalapudi R; Palaniswamy D; Sorial G; Maloney S Water Sci Technol; 2003; 47(9):173-8. PubMed ID: 12830957 [TBL] [Abstract][Full Text] [Related]
5. Energetic residues from field disposal of gun propellants. Walsh MR; Walsh ME; Hewitt AD J Hazard Mater; 2010 Jan; 173(1-3):115-22. PubMed ID: 19758750 [TBL] [Abstract][Full Text] [Related]
6. Quantification and modelling of 2,4-dinitrotoluene reduction with high-purity and cast iron. Jafarpour B; Imhoff PT; Chiu PC J Contam Hydrol; 2005 Jan; 76(1-2):87-107. PubMed ID: 15588574 [TBL] [Abstract][Full Text] [Related]
7. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation. Thomas JM; Hernandez R; Kuo CH J Hazard Mater; 2008 Jun; 155(1-2):193-8. PubMed ID: 18166266 [TBL] [Abstract][Full Text] [Related]
8. Aerobic biodegradation of 2,4-DNT and 2,6-DNT: performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. Paca J; Halecky M; Barta J; Bajpai R J Hazard Mater; 2009 Apr; 163(2-3):848-54. PubMed ID: 18722055 [TBL] [Abstract][Full Text] [Related]
9. Leaching of propellant compounds from munition residues may be controlled by sorption to nitrocellulose. Kuo DTF; Simini M; Allen HE Sci Total Environ; 2017 Dec; 599-600():2135-2141. PubMed ID: 28558434 [TBL] [Abstract][Full Text] [Related]
10. Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone. Fortner JD; Zhang C; Spain JC; Hughes JB Environ Sci Technol; 2003 Aug; 37(15):3382-91. PubMed ID: 12966985 [TBL] [Abstract][Full Text] [Related]
11. Remediation of dinitrotoluene contaminated soils from former ammunition plants: soil washing efficiency and effective process monitoring in bioslurry reactors. Zhang C; Daprato RC; Nishino SF; Spain JC; Hughes JB J Hazard Mater; 2001 Oct; 87(1-3):139-54. PubMed ID: 11566406 [TBL] [Abstract][Full Text] [Related]
12. Photolysis of 2,4-dinitrotoluene in various water solutions: effect of dissolved species. Mihas O; Kalogerakis N; Psillakis E J Hazard Mater; 2007 Jul; 146(3):535-9. PubMed ID: 17521807 [TBL] [Abstract][Full Text] [Related]
13. Experimental evidence for in situ natural attenuation of 2,4- and 2,6-dinitrotoluene in marine sediment. Yang H; Halasz A; Zhao JS; Monteil-Rivera F; Hawari J Chemosphere; 2008 Jan; 70(5):791-9. PubMed ID: 17765284 [TBL] [Abstract][Full Text] [Related]
14. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study. Alavi G; Chung M; Lichwa J; D'Alessio M; Ray C J Hazard Mater; 2011 Jan; 185(2-3):1600-4. PubMed ID: 21087822 [TBL] [Abstract][Full Text] [Related]
15. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils. Jiradecha C; Urgun-Demirtas M; Pagilla K J Hazard Mater; 2006 Aug; 136(1):61-7. PubMed ID: 16359784 [TBL] [Abstract][Full Text] [Related]
16. Use of poultry litter for biodegradation of soil contaminated with 2,4- and 2,6-dinitrotoluene. Gupta G; Bhaskaran H J Hazard Mater; 2004 Dec; 116(1-2):167-71. PubMed ID: 15561375 [TBL] [Abstract][Full Text] [Related]
17. Reactivity of lactate-modified nanoscale iron particles with 2,4-dinitrotoluene in soils. Darko-Kagya K; Khodadoust AP; Reddy KR J Hazard Mater; 2010 Oct; 182(1-3):177-83. PubMed ID: 20594642 [TBL] [Abstract][Full Text] [Related]
18. Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling. Szenknect S; Ardois C; Gaudet JP; Barthès V J Contam Hydrol; 2005 Jan; 76(1-2):139-65. PubMed ID: 15588576 [TBL] [Abstract][Full Text] [Related]
19. Transport of simazine in unsaturated sandy soil and predictions of its leaching under hypothetical field conditions. Suárez F; Bachmann J; Muñoz JF; Ortiz C; Tyler SW; Alister C; Kogan M J Contam Hydrol; 2007 Dec; 94(3-4):166-77. PubMed ID: 17604874 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of 2,4-dinitrotoluene biodegradation by Burkholderia sp. in sand bioreactors using bacterial hemoglobin technology. So J; Webster DA; Stark BC; Pagilla KR Biodegradation; 2004 Jun; 15(3):161-71. PubMed ID: 15228074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]