These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 19729307)
1. Real-time gait event detection using wearable sensors. Hanlon M; Anderson R Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307 [TBL] [Abstract][Full Text] [Related]
2. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection. Kotiadis D; Hermens HJ; Veltink PH Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237 [TBL] [Abstract][Full Text] [Related]
3. Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait. Desailly E; Daniel Y; Sardain P; Lacouture P Gait Posture; 2009 Jan; 29(1):76-80. PubMed ID: 18676147 [TBL] [Abstract][Full Text] [Related]
6. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Lau H; Tong K Gait Posture; 2008 Feb; 27(2):248-57. PubMed ID: 17513111 [TBL] [Abstract][Full Text] [Related]
7. Detection of gait events using an F-Scan in-shoe pressure measurement system. Catalfamo P; Moser D; Ghoussayni S; Ewins D Gait Posture; 2008 Oct; 28(3):420-6. PubMed ID: 18468441 [TBL] [Abstract][Full Text] [Related]
8. Classification of gait patterns in the time-frequency domain. Nyan MN; Tay FE; Seah KH; Sitoh YY J Biomech; 2006; 39(14):2647-56. PubMed ID: 16212968 [TBL] [Abstract][Full Text] [Related]
9. Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. Willemsen AT; Bloemhof F; Boom HB IEEE Trans Biomed Eng; 1990 Dec; 37(12):1201-8. PubMed ID: 2289794 [TBL] [Abstract][Full Text] [Related]
10. Assessment and validation of a simple automated method for the detection of gait events and intervals. Ghoussayni S; Stevens C; Durham S; Ewins D Gait Posture; 2004 Dec; 20(3):266-72. PubMed ID: 15531173 [TBL] [Abstract][Full Text] [Related]
11. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. Liu K; Liu T; Shibata K; Inoue Y; Zheng R J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624 [TBL] [Abstract][Full Text] [Related]
12. Assessment of walking features from foot inertial sensing. Sabatini AM; Martelloni C; Scapellato S; Cavallo F IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579 [TBL] [Abstract][Full Text] [Related]
13. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Jasiewicz JM; Allum JH; Middleton JW; Barriskill A; Condie P; Purcell B; Li RC Gait Posture; 2006 Dec; 24(4):502-9. PubMed ID: 16500102 [TBL] [Abstract][Full Text] [Related]
14. Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait. Houdijk H; Appelman FM; Van Velzen JM; Van der Woude LH; Van Bennekom CA J Rehabil Res Dev; 2008; 45(9):1335-42. PubMed ID: 19319757 [TBL] [Abstract][Full Text] [Related]
15. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data. Pendharkar G; Percival P; Morgan D; Lai D Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731 [TBL] [Abstract][Full Text] [Related]
16. Methods for gait event detection and analysis in ambulatory systems. Rueterbories J; Spaich EG; Larsen B; Andersen OK Med Eng Phys; 2010 Jul; 32(6):545-52. PubMed ID: 20435502 [TBL] [Abstract][Full Text] [Related]
17. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry. Sant'anna A; Wickström N IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410 [TBL] [Abstract][Full Text] [Related]
18. Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. Selles RW; Formanoy MA; Bussmann JB; Janssens PJ; Stam HJ IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):81-8. PubMed ID: 15813409 [TBL] [Abstract][Full Text] [Related]
19. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects. Alwan M; Ledoux A; Wasson G; Sheth P; Huang C Med Eng Phys; 2007 Apr; 29(3):380-9. PubMed ID: 16843697 [TBL] [Abstract][Full Text] [Related]
20. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Saremi K; Marehbian J; Yan X; Regnaux JP; Elashoff R; Bussel B; Dobkin BH Neurorehabil Neural Repair; 2006 Jun; 20(2):297-305. PubMed ID: 16679506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]