These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 19729434)

  • 81. Modelling diabetic nephropathy in mice.
    Azushima K; Gurley SB; Coffman TM
    Nat Rev Nephrol; 2018 Jan; 14(1):48-56. PubMed ID: 29062142
    [TBL] [Abstract][Full Text] [Related]  

  • 82. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy.
    Hudkins KL; Pichaiwong W; Wietecha T; Kowalewska J; Banas MC; Spencer MW; Mühlfeld A; Koelling M; Pippin JW; Shankland SJ; Askari B; Rabaglia ME; Keller MP; Attie AD; Alpers CE
    J Am Soc Nephrol; 2010 Sep; 21(9):1533-42. PubMed ID: 20634301
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Assessment of diabetic nephropathy in the Akita mouse.
    Chang JH; Gurley SB
    Methods Mol Biol; 2012; 933():17-29. PubMed ID: 22893398
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Murine models of diabetic nephropathy.
    Peters V; Schmitt CP
    Exp Clin Endocrinol Diabetes; 2012 Apr; 120(4):191-3. PubMed ID: 22402945
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Recent advances in animal models of diabetic nephropathy.
    Betz B; Conway BR
    Nephron Exp Nephrol; 2014; 126(4):191-5. PubMed ID: 25034792
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice.
    Takahashi T; Harris RC
    J Diabetes Res; 2014; 2014():590541. PubMed ID: 25371905
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A novel mouse model of advanced diabetic kidney disease.
    Thibodeau JF; Holterman CE; Burger D; Read NC; Reudelhuber TL; Kennedy CR
    PLoS One; 2014; 9(12):e113459. PubMed ID: 25514595
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Inflammation and the pathogenesis of diabetic nephropathy.
    Wada J; Makino H
    Clin Sci (Lond); 2013 Feb; 124(3):139-52. PubMed ID: 23075333
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rodent models of diabetic nephropathy: their utility and limitations.
    Kitada M; Ogura Y; Koya D
    Int J Nephrol Renovasc Dis; 2016; 9():279-290. PubMed ID: 27881924
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mouse Models for Studying Diabetic Nephropathy.
    Chow BSM; Allen TJ
    Curr Protoc Mouse Biol; 2015 Jun; 5(2):85-94. PubMed ID: 26069079
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Molecular mechanisms of diabetic kidney disease.
    Reidy K; Kang HM; Hostetter T; Susztak K
    J Clin Invest; 2014 Jun; 124(6):2333-40. PubMed ID: 24892707
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.
    Gembardt F; Bartaun C; Jarzebska N; Mayoux E; Todorov VT; Hohenstein B; Hugo C
    Am J Physiol Renal Physiol; 2014 Aug; 307(3):F317-25. PubMed ID: 24944269
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy.
    Soler MJ; Riera M; Batlle D
    Exp Diabetes Res; 2012; 2012():616313. PubMed ID: 22461787
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An Update on the Use of Animal Models in Diabetic Nephropathy Research.
    Betz B; Conway BR
    Curr Diab Rep; 2016 Feb; 16(2):18. PubMed ID: 26814757
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.
    Kang HM; Ahn SH; Choi P; Ko YA; Han SH; Chinga F; Park AS; Tao J; Sharma K; Pullman J; Bottinger EP; Goldberg IJ; Susztak K
    Nat Med; 2015 Jan; 21(1):37-46. PubMed ID: 25419705
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Comparison of diabetic nephropathy between male and female eNOS
    Ma Y; Li W; Yazdizadeh Shotorbani P; Dubansky BH; Huang L; Chaudhari S; Wu P; Wang LA; Ryou MG; Zhou Z; Ma R
    Am J Physiol Renal Physiol; 2019 May; 316(5):F889-F897. PubMed ID: 30810354
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Signaling of Cellular Senescence in Diabetic Nephropathy.
    Xiong Y; Zhou L
    Oxid Med Cell Longev; 2019; 2019():7495629. PubMed ID: 31687085
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products.
    Liu K; Xu H; Lv G; Liu B; Lee MK; Lu C; Lv X; Wu Y
    Life Sci; 2015 Feb; 123():78-85. PubMed ID: 25623853
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genetic modulation of diabetic nephropathy among mouse strains with Ins2 Akita mutation.
    Wu X; Davis RC; McMillen TS; Schaeffer V; Zhou Z; Qi H; Mazandarani PN; Alialy R; Hudkins KL; Lusis AJ; LeBoeuf RC
    Physiol Rep; 2014 Nov; 2(11):. PubMed ID: 25428948
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis.
    Daehn I; Casalena G; Zhang T; Shi S; Fenninger F; Barasch N; Yu L; D'Agati V; Schlondorff D; Kriz W; Haraldsson B; Bottinger EP
    J Clin Invest; 2014 Apr; 124(4):1608-21. PubMed ID: 24590287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.