BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19729894)

  • 1. An evolutionary interpretation of teleostean forebrain anatomy.
    Mueller T; Wullimann MF
    Brain Behav Evol; 2009; 74(1):30-42. PubMed ID: 19729894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: Insights for understanding telencephalic development and evolution.
    Abellán A; Vernier B; Rétaux S; Medina L
    J Comp Neurol; 2010 Sep; 518(17):3512-28. PubMed ID: 20589911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model.
    Yamamoto N; Ishikawa Y; Yoshimoto M; Xue HG; Bahaxar N; Sawai N; Yang CY; Ozawa H; Ito H
    Brain Behav Evol; 2007; 69(2):96-104. PubMed ID: 17230017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The telencephalon of the sea catfish Galeichthys felis.
    Morgan GC
    J Hirnforsch; 1975; 16(2):131-50. PubMed ID: 1214047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression.
    Mueller T; Wullimann MF; Guo S
    J Comp Neurol; 2008 Mar; 507(2):1245-57. PubMed ID: 18181142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse.
    Mueller T; Vernier P; Wullimann MF
    J Comp Neurol; 2006 Feb; 494(4):620-34. PubMed ID: 16374795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forebrain evolution in bony fishes.
    Northcutt RG
    Brain Res Bull; 2008 Mar; 75(2-4):191-205. PubMed ID: 18331871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods.
    Mueller T; Guo S
    J Comp Neurol; 2009 Oct; 516(6):553-68. PubMed ID: 19673006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals.
    Petanjek Z; Dujmović A; Kostović I; Esclapez M
    Coll Antropol; 2008 Jan; 32 Suppl 1():9-17. PubMed ID: 18405052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus.
    Piñuela C; Northcutt RG
    Brain Behav Evol; 2007; 69(4):229-53. PubMed ID: 17299256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topography and connections of the telencephalon in a chondrostean, Acipenser baeri: an experimental study.
    Huesa G; Anadón R; Yáñez J
    J Comp Neurol; 2006 Aug; 497(4):519-41. PubMed ID: 16739163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The forebrain of actinopterygians revisited.
    Nieuwenhuys R
    Brain Behav Evol; 2009; 73(4):229-52. PubMed ID: 19546532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey.
    Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Abalo XM; Rodríguez-Muñoz R; Rodicio MC; Anadón R
    J Comp Neurol; 2002 May; 446(4):360-76. PubMed ID: 11954035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts.
    Braford MR
    Brain Behav Evol; 2009; 74(1):56-76. PubMed ID: 19729896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species.
    Luzzati F; Bonfanti L; Fasolo A; Peretto P
    Cereb Cortex; 2009 May; 19(5):1028-41. PubMed ID: 18832334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala.
    Medina L; Bupesh M; Abellán A
    Brain Behav Evol; 2011; 78(3):216-36. PubMed ID: 21860224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of major telencephalic pathways in an elasmobranch, the thornback ray Platyrhinoidis triseriata.
    Hofmann MH; Northcutt RG
    Brain Behav Evol; 2008; 72(4):307-25. PubMed ID: 19147992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective asymmetry in a conserved forebrain to midbrain projection.
    Kuan YS; Gamse JT; Schreiber AM; Halpern ME
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):669-78. PubMed ID: 17592620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution.
    Menuet A; Alunni A; Joly JS; Jeffery WR; Rétaux S
    Development; 2007 Mar; 134(5):845-55. PubMed ID: 17251267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.
    van den Akker WM; Brox A; Puelles L; Durston AJ; Medina L
    J Comp Neurol; 2008 Jan; 506(2):211-23. PubMed ID: 18022953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.