These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19730592)

  • 41. Photorefractive ring resonators with vectorial two-beam coupling: Theory and applications.
    Petrovic M; Belic M
    Phys Rev A; 1995 Jul; 52(1):671-680. PubMed ID: 9912289
    [No Abstract]   [Full Text] [Related]  

  • 42. Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter.
    Lombard L; Brignon A; Huignard JP; Lallier E; Lucas-Leclin G; Georges P; Pauliat G; Roosen G
    Opt Lett; 2004 May; 29(9):989-91. PubMed ID: 15143650
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Static and dynamic two-wave mixing in GaAs.
    Schley RS; Telschow KL; Holland J
    Appl Opt; 2000 Aug; 39(24):4348-54. PubMed ID: 18350021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Near-infrared four-wave mixing with gain and self-starting oscillators with photorefractive GaAs.
    Rajbenbach H; Imbert B; Huignard JP; Mallick S
    Opt Lett; 1989 Jan; 14(1):78-80. PubMed ID: 19749829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides.
    Guo K; Friis SMM; Christensen JB; Christensen EN; Shi X; Ding Y; Ou H; Rottwitt K
    Opt Lett; 2017 Sep; 42(18):3670-3673. PubMed ID: 28914929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beam amplification resulting from non-Bragg wave mixing in photorefractive strontium barium niobate.
    Apolinar-Iribe A; Korneev N; Sánchez-Mondragón JJ
    Opt Lett; 1998 Dec; 23(24):1877-9. PubMed ID: 18091941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.
    Bo F; Zhang G; Xu J
    Opt Express; 2005 Oct; 13(20):8198-203. PubMed ID: 19498849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiwave coupling in a high-gain photorefractive polymer.
    Matsushita K; Banerjee PP; Ozaki S; Miyazaki D
    Opt Lett; 1999 May; 24(9):593-5. PubMed ID: 18073793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elimination of beam walk-off in low-coherence off-axis photorefractive holography.
    Ansari Z; Gu Y; Tziraki M; Jones R; French PM; Nolte DD; Melloch MR
    Opt Lett; 2001 Mar; 26(6):334-6. PubMed ID: 18040315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical amplification of diffraction-free beams by photorefractive two-wave mixing and its application to laser Doppler velocimetry.
    Ozkul C; Leroux S; Anthore N; Amara MK; Rasset S
    Appl Opt; 1995 Aug; 34(24):5485-91. PubMed ID: 21060370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved slow light performances using photorefractive two-wave mixing.
    Bouldja N; Sciamanna M; Wolfersberger D
    Opt Lett; 2019 Mar; 44(6):1496-1499. PubMed ID: 30874685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photorefractive properties of 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline.
    Sutter K; Hulliger J; Schlesser R; Günter P
    Opt Lett; 1993 May; 18(10):778-80. PubMed ID: 19802270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Image transmission through a thick dynamic distorter by the photorefractive fanning effect.
    Zhang J; Wang H; Yoshikado S; Aruga T
    Opt Lett; 1998 Apr; 23(8):585-7. PubMed ID: 18084584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Model of anisotropic nonlinearity in self-defocusing photorefractive media.
    Barsi C; Fleischer JW
    Opt Express; 2015 Sep; 23(19):24426-32. PubMed ID: 26406647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong beam coupling in mesogenic materials with photorefractive Bragg gratings.
    Ono H; Kawatsuki N
    Opt Lett; 1999 Feb; 24(3):130-2. PubMed ID: 18071430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time parallel optical logic operation using photorefractive two-wave mixing and fringe-shifting techniques.
    Xu H; Yuan Y; Xu K; Lu Y
    Appl Opt; 1992 Apr; 31(11):1769-73. PubMed ID: 20720816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Speckle-free image amplification by two-wave coupling in a photorefractive crystal.
    Kawata Y; Kawata S
    Appl Opt; 1993 Feb; 32(5):730-6. PubMed ID: 20802747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical triple-in digital logic using nonlinear optical four-wave mixing.
    Widjaja J; Tomita Y
    Appl Opt; 1995 Aug; 34(23):5074-6. PubMed ID: 21052352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.