These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19730676)

  • 1. Googling food webs: can an eigenvector measure species' importance for coextinctions?
    Allesina S; Pascual M
    PLoS Comput Biol; 2009 Sep; 5(9):e1000494. PubMed ID: 19730676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional links and robustness in food webs.
    Allesina S; Bodini A; Pascual M
    Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1524):1701-9. PubMed ID: 19451121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trophic redundancy reduces vulnerability to extinction cascades.
    Sanders D; Thébault E; Kehoe R; Frank van Veen FJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2419-2424. PubMed ID: 29467292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophically unique species are vulnerable to cascading extinction.
    Petchey OL; Eklöf A; Borrvall C; Ebenman B
    Am Nat; 2008 May; 171(5):568-79. PubMed ID: 18419567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the unpredictability of future biodiversity in ecological networks.
    Ingram T; Steel M
    J Theor Biol; 2010 Jun; 264(3):1047-56. PubMed ID: 20211629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ecological network approach to predict ecosystem service vulnerability to species losses.
    Keyes AA; McLaughlin JP; Barner AK; Dee LE
    Nat Commun; 2021 Mar; 12(1):1586. PubMed ID: 33707438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging theory and experiments to predict and understand coextinctions.
    Morton DN; Keyes A; Barner AK; Dee LE
    Trends Ecol Evol; 2022 Oct; 37(10):886-898. PubMed ID: 35798612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying co-extinctions and ecosystem service vulnerability in coastal ecosystems experiencing climate warming.
    Wilkes LN; Barner AK; Keyes AA; Morton D; Byrnes JEK; Dee LE
    Glob Chang Biol; 2024 Jul; 30(7):e17422. PubMed ID: 39034898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the consequences of species loss using size-structured biodiversity approaches.
    Brose U; Blanchard JL; Eklöf A; Galiana N; Hartvig M; R Hirt M; Kalinkat G; Nordström MC; O'Gorman EJ; Rall BC; Schneider FD; Thébault E; Jacob U
    Biol Rev Camb Philos Soc; 2017 May; 92(2):684-697. PubMed ID: 26756137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food web structure and interaction strength pave the way for vulnerability to extinction.
    Karlsson P; Jonsson T; Jonsson A
    J Theor Biol; 2007 Nov; 249(1):77-92. PubMed ID: 17727894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using food web dominator trees to catch secondary extinctions in action.
    Bodini A; Bellingeri M; Allesina S; Bondavalli C
    Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1524):1725-31. PubMed ID: 19451123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient keystone species identification strategy based on tabu search.
    Fan C; Zhu D; Zhang T; Wu R
    PLoS One; 2023; 18(5):e0285575. PubMed ID: 37167265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascading extinctions and community collapse in model food webs.
    Dunne JA; Williams RJ
    Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1524):1711-23. PubMed ID: 19451122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity maintenance in food webs with regulatory environmental feedbacks.
    Bagdassarian CK; Dunham AE; Brown CG; Rauscher D
    J Theor Biol; 2007 Apr; 245(4):705-14. PubMed ID: 17240397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighting and indirect effects identify keystone species in food webs.
    Zhao L; Zhang H; O'Gorman EJ; Tian W; Ma A; Moore JC; Borrett SR; Woodward G
    Ecol Lett; 2016 Sep; 19(9):1032-40. PubMed ID: 27346328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The robustness and restoration of a network of ecological networks.
    Pocock MJ; Evans DM; Memmott J
    Science; 2012 Feb; 335(6071):973-7. PubMed ID: 22363009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance.
    Vieira MC; Almeida-Neto M
    Ecol Lett; 2015 Feb; 18(2):144-52. PubMed ID: 25431016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species loss and secondary extinctions in simple and complex model communities.
    Eklöf A; Ebenman B
    J Anim Ecol; 2006 Jan; 75(1):239-46. PubMed ID: 16903061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-web complexity emerging from ecological dynamics on adaptive networks.
    Garcia-Domingo JL; Saldaña J
    J Theor Biol; 2007 Aug; 247(4):819-26. PubMed ID: 17512552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.