These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 1973080)
21. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124 [TBL] [Abstract][Full Text] [Related]
22. Motility and centrosomal organization during sea urchin and mouse fertilization. Schatten H; Schatten G Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956 [TBL] [Abstract][Full Text] [Related]
23. Different cytoskeletal organization in two maturation stages of Discoglossus pictus (Anura) oocytes: thickness and stability of actin microfilaments and tropomyosin immunolocalization. Campanella C; Chaponnier C; Quaglia L; Gualtieri R; Gabbiani G Mol Reprod Dev; 1990 Feb; 25(2):130-9. PubMed ID: 2178640 [TBL] [Abstract][Full Text] [Related]
24. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. Burgess DR; Schroeder TE J Cell Biol; 1977 Sep; 74(3):1032-7. PubMed ID: 332702 [TBL] [Abstract][Full Text] [Related]
25. Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins. Schatten H Cell Motil Cytoskeleton; 1994; 27(1):59-68. PubMed ID: 8194110 [TBL] [Abstract][Full Text] [Related]
26. Accumulation of WGA receptors in the cleavage furrow during cytokinesis of sea urchin eggs. Yoshigaki T Exp Cell Res; 1997 Nov; 236(2):463-71. PubMed ID: 9367631 [TBL] [Abstract][Full Text] [Related]
27. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus. Harris PJ Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989 [TBL] [Abstract][Full Text] [Related]
28. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs. Rappaport R J Exp Zool; 1985 Apr; 234(1):167-71. PubMed ID: 3989496 [TBL] [Abstract][Full Text] [Related]
29. The complex dynamic network of microtubule and microfilament cytasters of the leech zygote. Cantillana V; Urrutia M; Ubilla A; Fernández J Dev Biol; 2000 Dec; 228(1):136-49. PubMed ID: 11087633 [TBL] [Abstract][Full Text] [Related]
30. Constitutive hsp70 is essential to mitosis during early cleavage of Paracentrotus lividus embryos: the blockage of constitutive hsp70 impairs mitosis. Sconzo G; Palla F; Agueli C; Spinelli G; Giudice G; Cascino D; Geraci F Biochem Biophys Res Commun; 1999 Jun; 260(1):143-9. PubMed ID: 10381358 [TBL] [Abstract][Full Text] [Related]
31. Organisation of the cytoskeleton during in vitro maturation of horse oocytes. Tremoleda JL; Schoevers EJ; Stout TA; Colenbrander B; Bevers MM Mol Reprod Dev; 2001 Oct; 60(2):260-9. PubMed ID: 11553927 [TBL] [Abstract][Full Text] [Related]
32. Different reactivity with monoclonal anti-tubulin antibodies between native and fixed mitotic microtubules in sea urchin eggs. Oka MT; Arai T; Hamaguchi Y Cell Motil Cytoskeleton; 1994; 29(3):241-9. PubMed ID: 7895288 [TBL] [Abstract][Full Text] [Related]
33. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C. Shimizu T Dev Biol; 1997 Aug; 188(1):110-21. PubMed ID: 9245516 [TBL] [Abstract][Full Text] [Related]
34. Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth. Riparbelli MG; Callaini G Cell Motil Cytoskeleton; 1995; 31(4):298-306. PubMed ID: 7553916 [TBL] [Abstract][Full Text] [Related]
35. Cleavage in conical sand dollar eggs. Rappaport R; Rappaport BN Dev Biol; 1994 Jul; 164(1):258-66. PubMed ID: 8026628 [TBL] [Abstract][Full Text] [Related]
36. Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. Harris P; Osborn M; Weber K J Cell Biol; 1980 Mar; 84(3):668-79. PubMed ID: 6987246 [TBL] [Abstract][Full Text] [Related]
37. The changes in structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure. Begg DA; Salmon ED; Hyatt HA J Cell Biol; 1983 Dec; 97(6):1795-805. PubMed ID: 6643578 [TBL] [Abstract][Full Text] [Related]
38. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization. Hamaguchi Y; Mabuchi I Cell Motil Cytoskeleton; 1988; 9(2):153-63. PubMed ID: 3359492 [TBL] [Abstract][Full Text] [Related]
39. 51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro. Toriyama M; Ohta K; Endo S; Sakai H Cell Motil Cytoskeleton; 1988; 9(2):117-28. PubMed ID: 3359491 [TBL] [Abstract][Full Text] [Related]
40. Localization and possible function of 20 kDa actin-modulating protein (actolinkin) in the sea urchin egg. Ishidate S; Mabuchi I Eur J Cell Biol; 1988 Jun; 46(2):275-81. PubMed ID: 3169033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]