These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19730866)
1. A proteomic view into infection of greyback canegrubs (Dermolepida albohirtum) by Metarhizium anisopliae. Manalil NS; Junior Te'o VS; Braithwaite K; Brumbley S; Samson P; Nevalainen KM Curr Genet; 2009 Oct; 55(5):571-81. PubMed ID: 19730866 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of the Metarhizium anisopliae secretome in response to exposure to the greyback cane grub and grub cuticles. Manalil NS; Junior Téo VS; Braithwaite K; Brumbley S; Samson P; Helena Nevalainen KM Fungal Biol; 2010 Aug; 114(8):637-45. PubMed ID: 20943175 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus. Murad AM; Noronha EF; Miller RNG; Costa FT; Pereira CD; Mehta Â; Caldas RA; Franco OL Microbiology (Reading); 2008 Dec; 154(Pt 12):3766-3774. PubMed ID: 19047744 [TBL] [Abstract][Full Text] [Related]
4. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex. Lopes RB; Faria M; Souza DA; Bloch C; Silva LP; Humber RA Mycologia; 2014; 106(4):865-78. PubMed ID: 24987123 [TBL] [Abstract][Full Text] [Related]
5. Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto. Su Y; Guo Q; Tu J; Li X; Meng L; Cao L; Dong D; Qiu J; Guan X Can J Microbiol; 2013 Jul; 59(7):443-8. PubMed ID: 23826952 [TBL] [Abstract][Full Text] [Related]
6. Spinosad interacts synergistically with the insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae). Ericsson JD; Kabaluk JT; Goettel MS; Myers JH J Econ Entomol; 2007 Feb; 100(1):31-8. PubMed ID: 17370806 [TBL] [Abstract][Full Text] [Related]
7. Secretome of the biocontrol agent metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. Beys-da-Silva WO; Santi L; Berger M; Calzolari D; Passos DO; Guimarães JA; Moresco JJ; Yates JR J Proteome Res; 2014 May; 13(5):2282-96. PubMed ID: 24702058 [TBL] [Abstract][Full Text] [Related]
8. Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Huang W; Huang P; Yü D; Li C; Huang S; Qi P; Huang S; Keyhani NO; Huang Z Microbiol Spectr; 2022 Dec; 10(6):e0076022. PubMed ID: 36314906 [TBL] [Abstract][Full Text] [Related]
10. Pathogenicity of an Indigenous Strain of the Entomopathogenic Fungus Metarhizium anisopliae (Hypocreales: Clavicipitaceae) (MET-GRA4 Strain) as a Potential Biological Control Agent Against the Red Palm Weevil (Coleoptera: Dryophthoridae). Ishak I; Ng LC; Haris-Hussain M; Jalinas J; Idris AB; Azlina Z; Samsudin A; Wahizatul AA J Econ Entomol; 2020 Feb; 113(1):43-49. PubMed ID: 31586213 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomics Reveal Several Novel Viruses from Canegrubs (Coleoptera: Scarabaeidae) in Central Queensland, Australia. Etebari K; Lenancker P; Powell KS; Furlong MJ Viruses; 2022 Mar; 14(3):. PubMed ID: 35337056 [TBL] [Abstract][Full Text] [Related]
12. Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods. Santi L; Silva WO; Pinto AF; Schrank A; Vainstein MH Fungal Biol; 2010 Apr; 114(4):312-9. PubMed ID: 20943140 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize. Meissle M; Pilz C; Romeis J Appl Environ Microbiol; 2009 Jun; 75(12):3937-43. PubMed ID: 19376921 [TBL] [Abstract][Full Text] [Related]
14. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Freimoser FM; Hu G; Leger RJS Microbiology (Reading); 2005 Feb; 151(Pt 2):361-371. PubMed ID: 15699187 [TBL] [Abstract][Full Text] [Related]
15. Isolation of two Locust protein targets of a protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102. Li Z; Wang C; Xia Y J Invertebr Pathol; 2008 Oct; 99(2):151-5. PubMed ID: 18692505 [TBL] [Abstract][Full Text] [Related]
16. Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins. Rustiguel CB; Rosa JC; Jorge JA; de Oliveira AHC; Guimarães LHS Curr Microbiol; 2016 Feb; 72(2):220-227. PubMed ID: 26597214 [TBL] [Abstract][Full Text] [Related]
17. A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Barros BH; da Silva SH; dos ReisMarques Edos R; Rosa JC; Yatsuda AP; Roberts DW; Braga GU Fungal Biol; 2010 Jul; 114(7):572-9. PubMed ID: 20943168 [TBL] [Abstract][Full Text] [Related]
18. Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. Ment D; Gindin G; Samish M; Glazer I Arch Insect Biochem Physiol; 2020 Dec; 105(4):e21756. PubMed ID: 33140492 [TBL] [Abstract][Full Text] [Related]
19. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae. Wang C; Cao Y; Wang Z; Yin Y; Peng G; Li Z; Zhao H; Xia Y J Invertebr Pathol; 2007 Nov; 96(3):230-6. PubMed ID: 17658547 [TBL] [Abstract][Full Text] [Related]