BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19730908)

  • 1. Gallium nitride electrodes for membrane-based electrochemical biosensors.
    Schubert T; Steinhoff G; von Ribbeck HG; Stutzmannn M; Eickhoff M; Tanaka M
    Eur Phys J E Soft Matter; 2009 Oct; 30(2):233-8. PubMed ID: 19730908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode.
    Bordi F; Cametti C; Gliozzi A
    Bioelectrochemistry; 2002 Jul; 57(1):39-46. PubMed ID: 12049755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gramicidin A interaction at a dioleoyl phosphatidylcholine monolayer on a mercury drop electrode.
    Lindholm-Sethson B; Nyström J; Geladi P; Nelson A
    Anal Bioanal Chem; 2003 Feb; 375(3):350-5. PubMed ID: 12589498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes.
    Gassull D; Ulman A; Grunze M; Tanaka M
    J Phys Chem B; 2008 May; 112(18):5736-41. PubMed ID: 18412412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations.
    Korek EM; Teotia R; Herbig D; Brederlow R
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions.
    Korman CE; Megens M; Ajo-Franklin CM; Horsley DA
    Langmuir; 2013 Apr; 29(14):4421-5. PubMed ID: 23528109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and electrochemical behavior of gramicidin-bipolar lipid monolayer membranes supported on gold electrodes.
    Kim JM; Patwardhan A; Bott A; Thompson DH
    Biochim Biophys Acta; 2003 Oct; 1617(1-2):10-21. PubMed ID: 14637015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid impedance measurement of tethered bilayer lipid membrane biosensors.
    Mu X; Rairigh D; Liu X; Mason AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4796-9. PubMed ID: 22255411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured platinum-lipid bilayer composite as biosensor.
    Ye JS; Ottova A; Tien HT; Sheu FS
    Bioelectrochemistry; 2003 Apr; 59(1-2):65-72. PubMed ID: 12699821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.
    Zhang M; Zhai Q; Wan L; Chen L; Peng Y; Deng C; Xiang J; Yan J
    Anal Chem; 2018 Jun; 90(12):7422-7427. PubMed ID: 29786428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed hybrid bilayer lipid membranes on mechanically polished titanium surface.
    Sabirovas T; Valiūnienė A; Gabriunaite I; Valincius G
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183232. PubMed ID: 32119863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BLM Analyzer: a software tool for experiments on planar lipid bilayers.
    Novák P; Gaburjáková M; Zahradník I
    Biotechniques; 2007 Mar; 42(3):335-6, 338-9, 341. PubMed ID: 17390540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects.
    Arman S; Tilley RD; Gooding JJ
    Analyst; 2024 Jan; 149(2):269-289. PubMed ID: 38015145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy.
    Wilkop T; Xu D; Cheng Q
    Langmuir; 2007 Jan; 23(3):1403-9. PubMed ID: 17241065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Benzyl Alcohol on the Dielectric Structure of Lipid Bilayers.
    Alobeedallah H; Cornell B; Coster H
    J Membr Biol; 2016 Dec; 249(6):833-844. PubMed ID: 27803961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High impedance droplet-solid interface lipid bilayer membranes.
    Wang X; Ma S; Su Y; Zhang Y; Bi H; Zhang L; Han X
    Anal Chem; 2015 Feb; 87(4):2094-9. PubMed ID: 25600185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.