BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19730908)

  • 21. Comparing label free electrochemical impedimetric and capacitive biosensing architectures.
    Fernandes FC; Santos A; Martins DC; Góes MS; Bueno PR
    Biosens Bioelectron; 2014 Jul; 57():96-102. PubMed ID: 24561523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P
    Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards the realization of label-free biosensors through impedance spectroscopy integrated with IDES technology.
    Di Capua R; Barra M; Santoro F; Viggiano D; Ambrosino P; Soldovieri MV; Taglialatela M; Cassinese A
    Eur Biophys J; 2012 Feb; 41(2):249-56. PubMed ID: 22237602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are biosensor arrays in one membrane possible? A combination of multifrequency impedance measurements and chemometrics.
    Lindholm-Sethson B; Nyström J; Geladi P; Koeppe R; Nelson A; Whitehouse C
    Anal Bioanal Chem; 2003 Oct; 377(3):478-85. PubMed ID: 12920497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tethered bilayer lipid membrane that mimics microbial membranes.
    Andersson J; Fuller MA; Wood K; Holt SA; Köper I
    Phys Chem Chem Phys; 2018 May; 20(18):12958-12969. PubMed ID: 29701745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical impedimetric biosensors for liver function detection.
    Chuang YH; Chang YT; Liu KL; Chang HY; Yew TR
    Biosens Bioelectron; 2011 Oct; 28(1):368-72. PubMed ID: 21840200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequent fusion of liposomes to a positively charged planar bilayer without calcium ions.
    Anzai K; Masumi M; Kawasaki K; Kirino Y
    J Biochem; 1993 Oct; 114(4):487-91. PubMed ID: 7506250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review on impedimetric biosensors.
    Bahadır EB; Sezgintürk MK
    Artif Cells Nanomed Biotechnol; 2016; 44(1):248-62. PubMed ID: 25211230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform.
    Ren X; Liu K; Zhang Q; Noh HM; Kumbur EC; Yuan WW; Zhou JG; Chong PL
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12618-28. PubMed ID: 24937508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of a polymer cushion on the electrical properties and stability of surface-supported lipid bilayers.
    Lin J; Szymanski J; Searson PC; Hristova K
    Langmuir; 2010 Mar; 26(5):3544-8. PubMed ID: 20175577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical impedance spectroscopy as a method for electrical characterization of the bilayers formed from lipid-amino acid systems.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Chem Phys Lipids; 2013; 175-176():116-22. PubMed ID: 24055996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes.
    Vockenroth IK; Atanasova PP; Long JR; Jenkins AT; Knoll W; Köper I
    Biochim Biophys Acta; 2007 May; 1768(5):1114-20. PubMed ID: 17368423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical Impedance Spectroscopy as a Tool for Electrochemical Rate Constant Estimation.
    Chulkin P; Data P
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical Biosensors Based on Membrane-Bound Enzymes in Biomimetic Configurations.
    Alvarez-Malmagro J; García-Molina G; López De Lacey A
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.
    Phung T; Zhang Y; Dunlop J; Dalziel J
    Biosens Bioelectron; 2011 Mar; 26(7):3127-35. PubMed ID: 21211957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy.
    Ramadurai S; Sarangi NK; Maher S; MacConnell N; Bond AM; McDaid D; Flynn D; Keyes TE
    Langmuir; 2019 Jun; 35(24):8095-8109. PubMed ID: 31120755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some new aspects in biosensors.
    Dong S; Chen X
    J Biotechnol; 2002 Feb; 82(4):303-23. PubMed ID: 11996214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Temperature on the Structure, Electrical Resistivity, and Charge Capacitance of Supported Lipid Bilayers.
    Abraham S; Heckenthaler T; Morgenstern Y; Kaufman Y
    Langmuir; 2019 Jul; 35(26):8709-8715. PubMed ID: 31244251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic Biosensors Based on III-Nitride Semiconductors.
    Kirste R; Rohrbaugh N; Bryan I; Bryan Z; Collazo R; Ivanisevic A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():149-69. PubMed ID: 26048553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.