These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 197316)

  • 21. Streptococcus faecalis proton gradients and tetracycline transport.
    Munske GR; Lindley EV; Magnuson JA
    J Bacteriol; 1984 Apr; 158(1):49-54. PubMed ID: 6325398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complexity in valinomycin effects on amino acid transport.
    De Cespedes C; Christensen HN
    Biochim Biophys Acta; 1974 Feb; 339(1):139-45. PubMed ID: 4851127
    [No Abstract]   [Full Text] [Related]  

  • 23. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force.
    Asghar SS; Levin E; Harold FM
    J Biol Chem; 1973 Aug; 248(15):5225-33. PubMed ID: 4129287
    [No Abstract]   [Full Text] [Related]  

  • 24. Sodium-stimulated alpha-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells.
    Hamilton RT; Nilsen-Hamilton M
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1907-11. PubMed ID: 180527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sodium-dependent methyl 1-thio-beta-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium.
    Tokuda H; Kaback HR
    Biochemistry; 1977 May; 16(10):2130-6. PubMed ID: 16639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium-stimulated amino acid uptake into isolated membrane vesicles from Balb/c 3T3 cells transformed by simian virus 40.
    Quinlan DC; Parnes JR; Shalom R; Garvey TQ; Isselbacher KJ; Hochstadt J
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1631-5. PubMed ID: 179092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.
    Russell JB; Strobel HJ; Driessen AJ; Konings WN
    J Bacteriol; 1988 Aug; 170(8):3531-6. PubMed ID: 3136141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential inactivation of the "L" and "Ly+" amino acid transport systems by a sulfhydryl reagent and a photo-affinity probe.
    Hare JD; Marinetti GV; Meisler AI; Tometsko AM
    Biochim Biophys Acta; 1976 Sep; 443(3):485-93. PubMed ID: 183824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium cotransport systems and the membrane potential difference.
    Eddy AA
    Ann N Y Acad Sci; 1985; 456():51-62. PubMed ID: 2418734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of membrane vesicles in transport studies.
    Lever JE
    CRC Crit Rev Biochem; 1980 Jan; 7(3):187-246. PubMed ID: 6243082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active transport of L-proline by membrane vesicles isolated from rat brain.
    Kanner BI; Sharon I
    Biochim Biophys Acta; 1980 Jul; 600(1):185-94. PubMed ID: 7397167
    [No Abstract]   [Full Text] [Related]  

  • 32. The generation of a membrane potential by a fermentative bacterium [proceedings].
    Clarke DJ; Kell DB; Morris JG
    Biochem Soc Trans; 1979 Oct; 7(5):1111-2. PubMed ID: 510720
    [No Abstract]   [Full Text] [Related]  

  • 33. Sodium-dependent binding of p-nitrophenyl alpha-D-galactopyranoside to membrane vesicles isolated from Salmonella typhimurium.
    Tokuda H; Kaback HR
    Biochemistry; 1978 Feb; 17(4):698-705. PubMed ID: 341975
    [No Abstract]   [Full Text] [Related]  

  • 34. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40.
    Quinlan DC; Hochstadt J
    J Biol Chem; 1976 Jan; 251(2):344-54. PubMed ID: 173717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformed rodent cells exhibit increased resistance to the carboxylic ionophores monensin and nigericin.
    Liteplo RG
    Biochem Biophys Res Commun; 1991 Jan; 174(2):483-8. PubMed ID: 1993049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport alterations in virus-transformed cells.
    Parnes JR; Isselbacher KJ
    Prog Exp Tumor Res; 1978; 22():79-122. PubMed ID: 353890
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of sodium and potassium in regulating amino acid accumulation and protein synthesis in LM-strain mouse fibroblasts.
    Kuchler RJ
    Biochim Biophys Acta; 1967 Apr; 136(3):473-83. PubMed ID: 6048263
    [No Abstract]   [Full Text] [Related]  

  • 38. [Use of ionophoric antibiotics and protonophores to explain the role of univalent cations in the blast-transformation reaction of human lymphocytes].
    Astashkin EI; Nikolaeva IS; Kovalev IE
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1238-40. PubMed ID: 73440
    [No Abstract]   [Full Text] [Related]  

  • 39. Mechanisms of energy coupling to the transport of amino acids by Staphylococcus aureus.
    Niven DF; Hamilton WA
    Eur J Biochem; 1974 May; 44(2):517-22. PubMed ID: 4838680
    [No Abstract]   [Full Text] [Related]  

  • 40. Conversion of monensin from an ionophore to an inhibitor of Na+ uptake by SV3t3 membrane vesicles as a function of Na+ concentration.
    Hamilton RT; Nilsen-Hamilton M
    Biochem Biophys Res Commun; 1980 Jul; 95(1):140-7. PubMed ID: 6251800
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.