These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 19731945)

  • 1. A study of the dynamic interaction of surfactants with graphite and carbon nanotubes using Fmoc-amino acids as a model system.
    Li Y; Cousins BG; Ulijn RV; Kinloch IA
    Langmuir; 2009 Oct; 25(19):11760-7. PubMed ID: 19731945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FMOC-amino acid surfactants: discovery, characterization and chiroptical spectroscopy.
    Vijay R; Polavarapu PL
    J Phys Chem A; 2012 Nov; 116(44):10759-69. PubMed ID: 23057612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.
    Bai Y; Lin D; Wu F; Wang Z; Xing B
    Chemosphere; 2010 Apr; 79(4):362-7. PubMed ID: 20206374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical and conformational preferences of the 9-fluorenylmethoxycarbonyl-amino moiety.
    Broda MA; Mazur L; KozioĊ‚ AE; Rzeszotarska B
    J Pept Sci; 2004 Jul; 10(7):448-61. PubMed ID: 15298180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of nonconventional surfactants of aromatic amino acid-glycerol ethers: effect of the amino acid moiety on the orientation and surface properties of these soap-type amphiphiles.
    Varka EM; Heli MG; Coutouli-Argyropoulou E; Pegiadou SA
    Chemistry; 2006 Nov; 12(32):8305-11. PubMed ID: 16847987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale modeling of the interaction between short polypeptides and carbon surfaces.
    Gianese G; Rosato V; Cleri F; Celino M; Morales P
    J Phys Chem B; 2009 Sep; 113(35):12105-12. PubMed ID: 19673499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis.
    Patel N; Egorov SA
    J Am Chem Soc; 2005 Oct; 127(41):14124-5. PubMed ID: 16218573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces.
    Zangmeister RA; Maslar JE; Opdahl A; Tarlov MJ
    Langmuir; 2007 May; 23(11):6252-6. PubMed ID: 17455960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid gels assembled from Fmoc-amino acid and graphene oxide with controllable properties.
    Xing P; Chu X; Li S; Ma M; Hao A
    Chemphyschem; 2014 Aug; 15(11):2377-85. PubMed ID: 24789749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.
    Khang D; Kim SY; Liu-Snyder P; Palmore GT; Durbin SM; Webster TJ
    Biomaterials; 2007 Nov; 28(32):4756-68. PubMed ID: 17706277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Chromatographic Analysis of the Interaction between Amino Acids and Aromatic Surfaces Using Single-Wall Carbon Nanotubes.
    Iwashita K; Shiraki K; Ishii R; Tanaka T; Hirano A
    Langmuir; 2015 Aug; 31(32):8923-9. PubMed ID: 26208035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building block syntheses of gallic acid monomers and tris-(O-gallyl)-gallic acid dendrimers chemically attached to graphite powder: a comparative study of their uptake of Al(III) ions.
    Ye J; Abiman P; Crossley A; Jones JH; Wildgoose GG; Compton RG
    Langmuir; 2010 Feb; 26(3):1776-85. PubMed ID: 19778047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
    Asai M; Ohba T; Iwanaga T; Kanoh H; Endo M; Campos-Delgado J; Terrones M; Nakai K; Kaneko K
    J Am Chem Soc; 2011 Sep; 133(38):14880-3. PubMed ID: 21870827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface.
    Srinivas G; Nielsen SO; Moore PB; Klein ML
    J Am Chem Soc; 2006 Jan; 128(3):848-53. PubMed ID: 16417374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces.
    Shen JW; Wu T; Wang Q; Kang Y
    Biomaterials; 2008 Oct; 29(28):3847-55. PubMed ID: 18617259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.