These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 19732147)
1. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. Lehtovirta LE; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Dec; 70(3):367-76. PubMed ID: 19732147 [TBL] [Abstract][Full Text] [Related]
2. Afforestation of moorland leads to changes in crenarchaeal community structure. Nicol GW; Campbell CD; Chapman SJ; Prosser JI FEMS Microbiol Ecol; 2007 Apr; 60(1):51-9. PubMed ID: 17263837 [TBL] [Abstract][Full Text] [Related]
3. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
4. Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Nicol GW; Tscherko D; Chang L; Hammesfahr U; Prosser JI Environ Microbiol; 2006 Aug; 8(8):1382-93. PubMed ID: 16872402 [TBL] [Abstract][Full Text] [Related]
5. Primary succession of soil Crenarchaeota across a receding glacier foreland. Nicol GW; Tscherko D; Embley TM; Prosser JI Environ Microbiol; 2005 Mar; 7(3):337-47. PubMed ID: 15683394 [TBL] [Abstract][Full Text] [Related]
6. High abundance of Crenarchaeota in a temperate acidic forest soil. Kemnitz D; Kolb S; Conrad R FEMS Microbiol Ecol; 2007 Jun; 60(3):442-8. PubMed ID: 17391330 [TBL] [Abstract][Full Text] [Related]
7. Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Nicol GW; Webster G; Glover LA; Prosser JI Environ Microbiol; 2004 Aug; 6(8):861-7. PubMed ID: 15250888 [TBL] [Abstract][Full Text] [Related]
8. Archaeal diversity along a soil salinity gradient prone to disturbance. Walsh DA; Papke RT; Doolittle WF Environ Microbiol; 2005 Oct; 7(10):1655-66. PubMed ID: 16156738 [TBL] [Abstract][Full Text] [Related]
9. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Shen JP; Zhang LM; Zhu YG; Zhang JB; He JZ Environ Microbiol; 2008 Jun; 10(6):1601-11. PubMed ID: 18336563 [TBL] [Abstract][Full Text] [Related]
10. Differential response of archaeal groups to land use change in an acidic red soil. Shen JP; Cao P; Hu HW; He JZ Sci Total Environ; 2013 Sep; 461-462():742-9. PubMed ID: 23774250 [TBL] [Abstract][Full Text] [Related]
11. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. Hollister EB; Engledow AS; Hammett AJ; Provin TL; Wilkinson HH; Gentry TJ ISME J; 2010 Jun; 4(6):829-38. PubMed ID: 20130657 [TBL] [Abstract][Full Text] [Related]
12. Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Gattinger A; Höfle MG; Schloter M; Embacher A; Böhme F; Munch JC; Labrenz M Environ Microbiol; 2007 Mar; 9(3):612-24. PubMed ID: 17298362 [TBL] [Abstract][Full Text] [Related]
13. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Soo RM; Wood SA; Grzymski JJ; McDonald IR; Cary SC Environ Microbiol; 2009 Mar; 11(3):715-28. PubMed ID: 19278453 [TBL] [Abstract][Full Text] [Related]
14. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Tourna M; Freitag TE; Nicol GW; Prosser JI Environ Microbiol; 2008 May; 10(5):1357-64. PubMed ID: 18325029 [TBL] [Abstract][Full Text] [Related]
15. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. Offre P; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195 [TBL] [Abstract][Full Text] [Related]
16. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? Smalla K; Oros-Sichler M; Milling A; Heuer H; Baumgarte S; Becker R; Neuber G; Kropf S; Ulrich A; Tebbe CC J Microbiol Methods; 2007 Jun; 69(3):470-9. PubMed ID: 17407797 [TBL] [Abstract][Full Text] [Related]
17. Distribution and diversity of archaeal communities in selected Chinese soils. Cao P; Zhang LM; Shen JP; Zheng YM; Di HJ; He JZ FEMS Microbiol Ecol; 2012 Apr; 80(1):146-58. PubMed ID: 22220938 [TBL] [Abstract][Full Text] [Related]
18. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263 [TBL] [Abstract][Full Text] [Related]
19. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Steven B; Pollard WH; Greer CW; Whyte LG Environ Microbiol; 2008 Dec; 10(12):3388-403. PubMed ID: 19025556 [TBL] [Abstract][Full Text] [Related]
20. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. Chim Chan O; Casper P; Sha LQ; Feng ZL; Fu Y; Yang XD; Ulrich A; Zou XM FEMS Microbiol Ecol; 2008 Jun; 64(3):449-58. PubMed ID: 18430004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]