These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
750 related articles for article (PubMed ID: 19732337)
41. Are Q(ST)-F(ST) comparisons for natural populations meaningful? Pujol B; Wilson AJ; Ross RI; Pannell JR Mol Ecol; 2008 Nov; 17(22):4782-5. PubMed ID: 19140971 [TBL] [Abstract][Full Text] [Related]
42. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Verhoeven KJ; Poorter H; Nevo E; Biere A Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164 [TBL] [Abstract][Full Text] [Related]
43. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Tobler M; Dewitt TJ; Schlupp I; García de León FJ; Herrmann R; Feulner PG; Tiedemann R; Plath M Evolution; 2008 Oct; 62(10):2643-59. PubMed ID: 18637957 [TBL] [Abstract][Full Text] [Related]
45. Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Zhan J; Linde CC; Jürgens T; Merz U; Steinebrunner F; McDonald BA Mol Ecol; 2005 Aug; 14(9):2683-93. PubMed ID: 16029470 [TBL] [Abstract][Full Text] [Related]
46. On the relative roles of selection and genetic drift in shaping MHC variation. Alcaide M Mol Ecol; 2010 Sep; 19(18):3842-4. PubMed ID: 20854274 [TBL] [Abstract][Full Text] [Related]
47. [Genetic variation and differentiation in population of Japanese emperor oak (Quercus dentata Thunb.) and Mongolian oak (quercus mongolica fisch. ex ledeb.) in the south of the Russian far east]. Potenko VV; Koren' OG; Verkholat VP Genetika; 2007 Apr; 43(4):489-98. PubMed ID: 17555125 [TBL] [Abstract][Full Text] [Related]
48. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Luo Y; Widmer A; Karrenberg S Heredity (Edinb); 2015 Feb; 114(2):220-8. PubMed ID: 25293874 [TBL] [Abstract][Full Text] [Related]
49. Q(St) meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Chenoweth SF; Blows MW Evolution; 2008 Jun; 62(6):1437-49. PubMed ID: 18346219 [TBL] [Abstract][Full Text] [Related]
50. Inferring local adaptation from QST-FST comparisons: neutral genetic and quantitative trait variation in European populations of great snipe. Saether SA; Fiske P; Kålås JA; Kuresoo A; Luigujõe L; Piertney SB; Sahlman T; Höglund J J Evol Biol; 2007 Jul; 20(4):1563-76. PubMed ID: 17584249 [TBL] [Abstract][Full Text] [Related]
51. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Biedrzycka A; Radwan J Mol Ecol; 2008 Nov; 17(22):4801-11. PubMed ID: 19140973 [TBL] [Abstract][Full Text] [Related]
52. Geographical variation of genetic and phenotypic traits in the Mexican sailfin mollies, Poecilia velifera and P. petenensis. Hankison SJ; Ptacek MB Mol Ecol; 2008 May; 17(9):2219-33. PubMed ID: 18410289 [TBL] [Abstract][Full Text] [Related]
53. Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Limousin JM; Longepierre D; Huc R; Rambal S Tree Physiol; 2010 Aug; 30(8):1026-36. PubMed ID: 20621974 [TBL] [Abstract][Full Text] [Related]
54. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Hu B; Simon J; Kuster TM; Arend M; Siegwolf R; Rennenberg H Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():198-209. PubMed ID: 22934888 [TBL] [Abstract][Full Text] [Related]
55. Density-related changes in selection pattern for major histocompatibility complex genes in fluctuating populations of voles. Bryja J; Charbonnel N; Berthier K; Galan M; Cosson JF Mol Ecol; 2007 Dec; 16(23):5084-97. PubMed ID: 17956550 [TBL] [Abstract][Full Text] [Related]
56. Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Knight CA; Vogel H; Kroymann J; Shumate A; Witsenboer H; Mitchell-Olds T Mol Ecol; 2006 Apr; 15(5):1229-37. PubMed ID: 16626450 [TBL] [Abstract][Full Text] [Related]
57. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Leinonen T; Cano JM; Mäkinen H; Merilä J J Evol Biol; 2006 Nov; 19(6):1803-12. PubMed ID: 17040377 [TBL] [Abstract][Full Text] [Related]
58. Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Parelle J; Zapater M; Scotti-Saintagne C; Kremer A; Jolivet Y; Dreyer E; Brendel O Plant Cell Environ; 2007 Apr; 30(4):422-34. PubMed ID: 17324229 [TBL] [Abstract][Full Text] [Related]
59. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Sork VL; Davis FW; Westfall R; Flint A; Ikegami M; Wang H; Grivet D Mol Ecol; 2010 Sep; 19(17):3806-23. PubMed ID: 20723054 [TBL] [Abstract][Full Text] [Related]
60. Genetic consequences of habitat fragmentation in long-lived tree species: the case of the mediterranean Holm Oak (Quercus ilex, L.). Ortego J; Bonal R; Muñoz A J Hered; 2010; 101(6):717-26. PubMed ID: 20624756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]