These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 19732350)
21. An attempt to protect winter wheat against Gaeumannomyces graminis var. tritici by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Czaban J; Ksiezniak A; Wróblewska B; Paszkowski WL Pol J Microbiol; 2004; 53(2):101-10. PubMed ID: 15478355 [TBL] [Abstract][Full Text] [Related]
22. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250 [TBL] [Abstract][Full Text] [Related]
23. Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries. Zhang HB; Shi W; Yang MX; Sha T; Zhao ZW J Microbiol; 2007 Dec; 45(6):479-84. PubMed ID: 18176528 [TBL] [Abstract][Full Text] [Related]
24. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
25. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Huang X; Liu L; Wen T; Zhu R; Zhang J; Cai Z Microbiol Res; 2015 Dec; 181():33-42. PubMed ID: 26640050 [TBL] [Abstract][Full Text] [Related]
26. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. Shang Q; Yang G; Wang Y; Wu X; Zhao X; Hao H; Li Y; Xie Z; Zhang Y; Wang R World J Microbiol Biotechnol; 2016 Jun; 32(6):95. PubMed ID: 27116961 [TBL] [Abstract][Full Text] [Related]
27. Effects of consecutive monoculture of sweet potato on soil bacterial community as determined by pyrosequencing. Li H; Wang J; Liu Q; Zhou Z; Chen F; Xiang D J Basic Microbiol; 2019 Feb; 59(2):181-191. PubMed ID: 30288775 [TBL] [Abstract][Full Text] [Related]
28. Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. Hamid MI; Hussain M; Wu Y; Zhang X; Xiang M; Liu X FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27789537 [TBL] [Abstract][Full Text] [Related]
29. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061 [TBL] [Abstract][Full Text] [Related]
30. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Yin C; Hulbert SH; Schroeder KL; Mavrodi O; Mavrodi D; Dhingra A; Schillinger WF; Paulitz TC Appl Environ Microbiol; 2013 Dec; 79(23):7428-38. PubMed ID: 24056471 [TBL] [Abstract][Full Text] [Related]
31. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Beneduzi A; Peres D; da Costa PB; Bodanese Zanettini MH; Passaglia LM Res Microbiol; 2008 May; 159(4):244-50. PubMed ID: 18490146 [TBL] [Abstract][Full Text] [Related]
32. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis. Haldar S; Sengupta S J Basic Microbiol; 2015 Jul; 55(7):922-8. PubMed ID: 25572408 [TBL] [Abstract][Full Text] [Related]
33. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. Yang Y; Wang N; Guo X; Zhang Y; Ye B PLoS One; 2017; 12(5):e0178425. PubMed ID: 28542542 [TBL] [Abstract][Full Text] [Related]
34. Wheat Rhizosphere-Derived Bacteria Protect Soybean from Soilborne Diseases. Yin C; Larson M; Lahr N; Paulitz T Plant Dis; 2024 Jun; 108(6):1565-1576. PubMed ID: 38105448 [TBL] [Abstract][Full Text] [Related]
35. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. Rosenberg K; Bertaux J; Krome K; Hartmann A; Scheu S; Bonkowski M ISME J; 2009 Jun; 3(6):675-84. PubMed ID: 19242534 [TBL] [Abstract][Full Text] [Related]
36. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans. Shen Z; Penton CR; Lv N; Xue C; Yuan X; Ruan Y; Li R; Shen Q Microb Ecol; 2018 Apr; 75(3):739-750. PubMed ID: 28791467 [TBL] [Abstract][Full Text] [Related]
37. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus. Timonen S; Sinkko H; Sun H; Sietiö OM; Rinta-Kanto JM; Kiheri H; Heinonsalo J Microb Ecol; 2017 May; 73(4):939-953. PubMed ID: 28025668 [TBL] [Abstract][Full Text] [Related]
38. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Klein E; Ofek M; Katan J; Minz D; Gamliel A Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737 [TBL] [Abstract][Full Text] [Related]
39. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Liu YJ; Liu SJ; Drake HL; Horn MA Environ Microbiol; 2011 Apr; 13(4):991-1009. PubMed ID: 21219563 [TBL] [Abstract][Full Text] [Related]
40. Bacteria utilizing plant-derived carbon in the rhizosphere of Triticum aestivum change in different depths of an arable soil. Uksa M; Buegger F; Gschwendtner S; Lueders T; Kublik S; Kautz T; Athmann M; Köpke U; Munch JC; Schloter M; Fischer D Environ Microbiol Rep; 2017 Dec; 9(6):729-741. PubMed ID: 28892269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]