BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19732494)

  • 1. Rheological investigation of self-emulsification process: effect of co-surfactant.
    Biradar SV; Dhumal RS; Paradkar AR
    J Pharm Pharm Sci; 2009; 12(2):164-74. PubMed ID: 19732494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological investigation of self-emulsification process.
    Biradar SV; Dhumal RS; Paradkar A
    J Pharm Pharm Sci; 2009; 12(1):17-31. PubMed ID: 19470290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of different polysorbates on development of self-microemulsifying drug delivery systems using medium chain lipids.
    Shah A; Thool P; Sorathiya K; Prajapati H; Dalrymple D; Serajuddin ATM
    Drug Dev Ind Pharm; 2018 Feb; 44(2):215-223. PubMed ID: 29057677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate.
    Taha EI; Al-Saidan S; Samy AM; Khan MA
    Int J Pharm; 2004 Nov; 285(1-2):109-19. PubMed ID: 15488684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ternary phase diagrams by means of thermal and rheological analyses.
    Bonacucina G; Cespi M; Mencarelli G; Palmieri GF
    Drug Dev Ind Pharm; 2013 Oct; 39(10):1547-54. PubMed ID: 23057598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects.
    Eid AM; El-Enshasy HA; Aziz R; Elmarzugi NA
    Int J Nanomedicine; 2014; 9():4685-95. PubMed ID: 25336948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation.
    Inugala S; Eedara BB; Sunkavalli S; Dhurke R; Kandadi P; Jukanti R; Bandari S
    Eur J Pharm Sci; 2015 Jul; 74():1-10. PubMed ID: 25845633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions.
    Opawale FO; Burgess DJ
    J Pharm Pharmacol; 1998 Sep; 50(9):965-73. PubMed ID: 9811156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sugars on the formation of nanometer-sized droplets of vegetable oil by an isothermal low-energy emulsification method.
    Ikeda S; Miyanoshita M; Gohtani S
    J Food Sci; 2013 Jul; 78(7):E1017-21. PubMed ID: 23701718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-nanoemulsifying drug delivery system of cefpodoxime proxetil containing tocopherol polyethylene glycol succinate.
    Bajaj A; Rao MR; Khole I; Munjapara G
    Drug Dev Ind Pharm; 2013 May; 39(5):635-45. PubMed ID: 22564007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: a delivery system for poorly water-soluble drug.
    Bandivadeka MM; Pancholi SS; Kaul-Ghanekar R; Choudhari A; Koppikar S
    Drug Dev Ind Pharm; 2012 Jul; 38(7):883-92. PubMed ID: 22087760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.
    Jaworska M; Sikora E; Ogonowski J; Konieczna M
    Acta Biochim Pol; 2015; 62(2):229-33. PubMed ID: 25856560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug.
    Djordjevic L; Primorac M; Stupar M; Krajisnik D
    Int J Pharm; 2004 Mar; 271(1-2):11-9. PubMed ID: 15129969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alkyl chain asymmetry on catanionic mixtures of hydrogenated and fluorinated surfactants.
    Blanco E; Rodriguez-Abreu C; Schulz P; Ruso JM
    J Colloid Interface Sci; 2010 Jan; 341(2):261-6. PubMed ID: 19853859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Applications.
    Okamoto T; Tomomasa S; Nakajima H
    J Oleo Sci; 2016; 65(1):27-36. PubMed ID: 26743668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combination of starch nanoparticles and Tween 80 results in enhanced emulsion stability.
    Bu X; Wang X; Dai L; Ji N; Xiong L; Sun Q
    Int J Biol Macromol; 2020 Nov; 163():2048-2059. PubMed ID: 32961176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.