These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19732989)

  • 1. A field trial to assess the performance of CO2-supersaturated water injection for residual volatile LNAPL recovery.
    Nelson L; Barker J; Li T; Thomson N; Ioannidis M; Chatzis J
    J Contam Hydrol; 2009 Oct; 109(1-4):82-90. PubMed ID: 19732989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand.
    Kim H; Choi KM; Moon JW; Annable MD
    J Contam Hydrol; 2006 Nov; 88(1-2):23-35. PubMed ID: 16872716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.
    Johnston CD; Rayner JL; Briegel D
    J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid.
    Dobson R; Schroth MH; Zeyer J
    J Contam Hydrol; 2007 Dec; 94(3-4):235-48. PubMed ID: 17698242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of C2-C15 volatile organic compounds in a landfill cover soil.
    Tassi F; Montegrossi G; Vaselli O; Liccioli C; Moretti S; Nisi B
    Sci Total Environ; 2009 Jul; 407(15):4513-25. PubMed ID: 19446310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desorption rate of volatile compounds in polishing ponds.
    Alves EM; Cavalcanti PF; van Haandel A
    Water Sci Technol; 2011; 63(6):1177-82. PubMed ID: 21436553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical investigation of LNAPL movement in stratified media during soil remediation.
    Lashanizadegan A; Ayatollahi Sh; Kazemi H
    Environ Technol; 2007 Jul; 28(7):743-50. PubMed ID: 17674647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.
    Yoon H; Oostrom M; Wietsma TW; Werth CJ; Valocchi AJ
    J Contam Hydrol; 2009 Oct; 109(1-4):1-13. PubMed ID: 19720427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions.
    Kaslusky SF; Udell KS
    J Contam Hydrol; 2005 May; 77(4):325-47. PubMed ID: 15854722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.
    Kim H; Kim T; Shin S; Annable MD
    Environ Sci Technol; 2012 Sep; 46(17):9533-40. PubMed ID: 22775202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology.
    Xu P; Drewes JE; Heil D; Wang G
    Water Res; 2008 May; 42(10-11):2605-17. PubMed ID: 18258278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.
    Sookhak Lari K; Johnston CD; Rayner JL; Davis GB
    J Hazard Mater; 2018 Mar; 345():87-96. PubMed ID: 29131986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical decomposition of volatile and non-volatile organic compounds--a comparative study.
    Goel M; Hongqiang H; Mujumdar AS; Ray MB
    Water Res; 2004 Nov; 38(19):4247-61. PubMed ID: 15491671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone.
    Kechavarzi C; Soga K; Illangasekare TH
    J Contam Hydrol; 2005 Feb; 76(3-4):211-33. PubMed ID: 15683881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging.
    Halihan T; Paxton S; Graham I; Fenstemaker T; Riley M
    J Environ Monit; 2005 Apr; 7(4):283-7. PubMed ID: 15798793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale.
    Davis GB; Patterson BM; Johnston CD
    J Contam Hydrol; 2009 Jun; 107(1-2):91-100. PubMed ID: 19428139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of PCB-DNAPL from a rough-walled fracture using alcohol/polymer flooding.
    Gauthier M; Kueper BH
    J Contam Hydrol; 2006 Mar; 84(1-2):1-20. PubMed ID: 16442183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.