These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19732999)

  • 1. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils.
    Pan G; Li L; Zhao D; Chen H
    Environ Pollut; 2010 Jan; 158(1):35-40. PubMed ID: 19732999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
    Li L; Pan G; Chen H
    Huan Jing Ke Xue; 2010 Mar; 31(3):678-83. PubMed ID: 20358826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.
    Han B; Zhang M; Zhao D; Feng Y
    Water Res; 2015 Mar; 70():288-99. PubMed ID: 25543239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.
    Liang Q; Zhao D
    J Hazard Mater; 2014 Apr; 271():16-23. PubMed ID: 24584068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.
    Liu R; Zhao D
    Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil.
    Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM
    J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lability of drinking water treatment residuals (WTR) immobilized phosphorus: aging and pH effects.
    Agyin-Birikorang S; O'Connor GA
    J Environ Qual; 2007; 36(4):1076-85. PubMed ID: 17526887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.
    Ulén B; Etana A; Lindström B
    Water Sci Technol; 2012; 65(11):1903-11. PubMed ID: 22592458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.
    White JW; Coale FJ; Sims JT; Shober AL
    J Environ Qual; 2010; 39(1):314-23. PubMed ID: 20048319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanoparticles on kinetics release and fractionation of phosphorus.
    Taghipour M; Jalali M
    J Hazard Mater; 2015; 283():359-70. PubMed ID: 25306535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.
    Liu R; Zhao D
    Chemosphere; 2013 Apr; 91(5):594-601. PubMed ID: 23336925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling phosphate adsorption to the soil: application of the non-ideal competitive adsorption model.
    Nohra JS; Madramootoo CA; Hendershot WH
    Environ Pollut; 2007 Sep; 149(1):1-9. PubMed ID: 17360089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y; Zhao D
    Water Res; 2007 May; 41(10):2101-8. PubMed ID: 17412389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.