These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1973386)

  • 1. The effect of beta-adrenergic blockade on leg blood flow with repeated maximal contractions of the triceps surae muscle group in man.
    Kowalchuk JM; Klein CS; Hughson RL
    Eur J Appl Physiol Occup Physiol; 1990; 60(5):360-4. PubMed ID: 1973386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of beta-blockade on electrically stimulated contraction in fatigued human triceps surae muscle.
    Hughson RL; Green HJ; Alway SE; Patla AE; Frank JS
    Clin Physiol; 1987 Apr; 7(2):133-50. PubMed ID: 3568581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of selective and nonselective beta-blockade on skeletal muscle excitability and fatiguability.
    Cupido CM; Hicks AL; McKelvie RS; Sale DG; McComas AJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2461-6. PubMed ID: 7928871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human tibialis anterior contractile responses following fatiguing exercise with and without beta-adrenoceptor blockade.
    Alway SE; Hughson RL; Green HJ; Patla AE
    Clin Physiol; 1988 Jun; 8(3):215-25. PubMed ID: 3402183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical performance and muscle metabolism during beta-adrenergic blockade in man.
    Kaiser P
    Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardio-protection afforded by β-blockade is maintained during resistance exercise.
    Conviser JM; Ng AV; Rockey SS; Thomas DP
    J Sci Med Sport; 2017 Feb; 20(2):196-201. PubMed ID: 27012728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile properties of the human triceps surae following prolonged exercise and beta-blockade.
    Alway SE; Hughson RL; Green HJ; Patla AE; Frank JS
    Clin Physiol; 1987 Apr; 7(2):151-63. PubMed ID: 3568582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of beta-receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men.
    Ahlborg G; Juhlin-Dannfelt A
    J Appl Physiol (1985); 1994 Mar; 76(3):1037-42. PubMed ID: 7911796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable effects of beta-adrenoceptor blockade on muscle blood flow during exercise.
    Gullestad L; Hallén J; Sejersted OM
    Acta Physiol Scand; 1993 Nov; 149(3):257-71. PubMed ID: 7906074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of long-term beta-adrenergic-blockade on calf blood flow in hypertensive patients.
    Lepäntalo M; Tötterman KJ
    Clin Physiol; 1983 Feb; 3(1):35-42. PubMed ID: 6131760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of beta-blockade on plasma potassium concentrations and muscle excitability following static exercise.
    Unsworth K; Hicks A; McKelvie R
    Pflugers Arch; 1998 Aug; 436(3):449-56. PubMed ID: 9644229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ipsilateral and contralateral fatigue and muscle blood flow occlusion on the complexity of knee-extensor torque output in humans.
    Pethick J; Winter SL; Burnley M
    Exp Physiol; 2018 Jul; 103(7):956-967. PubMed ID: 29719079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective and nonselective beta-blockade of the peripheral circulation.
    Hiatt WR; Fradl DC; Zerbe GO; Byyny RL; Nies AS
    Clin Pharmacol Ther; 1984 Jan; 35(1):12-8. PubMed ID: 6690167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass.
    Ide K; Pott F; Van Lieshout JJ; Secher NH
    Acta Physiol Scand; 1998 Jan; 162(1):13-20. PubMed ID: 9492897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of beta-adrenoceptor blockade on leg blood flow and lactate release in man.
    Juhlin-Dannfelt A; Aström H
    Scand J Clin Lab Invest; 1979 Apr; 39(2):179-83. PubMed ID: 42966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of selective and nonselective beta-adrenergic blockade on mechanisms of exercise conditioning.
    Wolfel EE; Hiatt WR; Brammell HL; Carry MR; Ringel SP; Travis V; Horwitz LD
    Circulation; 1986 Oct; 74(4):664-74. PubMed ID: 2875812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute cardioselective and non-selective beta-adrenergic blockade on left-ventricular volumes and vascular resistance at rest and during exercise.
    Kelbaek H; Godtrfedsen J
    Scand J Clin Lab Invest; 1991 Apr; 51(2):161-6. PubMed ID: 1675022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ramp work tests with three different beta-blockers in normal human subjects.
    Hughson RL
    Eur J Appl Physiol Occup Physiol; 1989; 58(7):710-6. PubMed ID: 2567667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomic blockade and cardiovascular responses to static exercise in partially curarized man.
    Mitchell JH; Reeves DR; Rogers HB; Secher NH; Victor RG
    J Physiol; 1989 Jun; 413():433-45. PubMed ID: 2600859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of aerobic conditioning on the peripheral circulation during chronic beta-adrenergic blockade.
    Hiatt WR; Marsh RC; Brammell HL; Fee C; Horwitz LD
    J Am Coll Cardiol; 1984 Nov; 4(5):958-63. PubMed ID: 6491088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.