These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
787 related articles for article (PubMed ID: 19733893)
1. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related]
2. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
3. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Vromman D; Flores-Bavestrello A; Šlejkovec Z; Lapaille S; Teixeira-Cardoso C; Briceño M; Kumar M; Martínez JP; Lutts S Sci Total Environ; 2011 Dec; 412-413():286-95. PubMed ID: 22051550 [TBL] [Abstract][Full Text] [Related]
4. Hydroponics as a valid tool to assess arsenic availability in mine soils. Moreno-Jiménez E; Esteban E; Fresno T; de Egea CL; Peñalosa JM Chemosphere; 2010 Apr; 79(5):513-7. PubMed ID: 20223499 [TBL] [Abstract][Full Text] [Related]
5. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. Anderson L; Walsh MM Sci Total Environ; 2007 Jul; 379(2-3):263-5. PubMed ID: 17113631 [TBL] [Abstract][Full Text] [Related]
6. Comparison of arsenic resistance in Mediterranean woody shrubs used in restoration activities. Moreno-Jiménez E; Peñalosa JM; Carpena-Ruiz RO; Esteban E Chemosphere; 2008 Mar; 71(3):466-73. PubMed ID: 18037471 [TBL] [Abstract][Full Text] [Related]
7. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Arnetoli M; Vooijs R; ten Bookum W; Galardi F; Gonnelli C; Gabbrielli R; Schat H; Verkleij JA Environ Pollut; 2008 Apr; 152(3):585-91. PubMed ID: 17707110 [TBL] [Abstract][Full Text] [Related]
8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
10. Use of iodide to enhance the phytoextraction of mercury-contaminated soil. Wang Y; Greger M Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348 [TBL] [Abstract][Full Text] [Related]
11. Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Singh N; Raj A; Khare PB; Tripathi RD; Jamil S Bioresour Technol; 2010 Dec; 101(23):8960-8. PubMed ID: 20655204 [TBL] [Abstract][Full Text] [Related]
12. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217 [TBL] [Abstract][Full Text] [Related]
13. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Datta R; Quispe MA; Sarkar D Bull Environ Contam Toxicol; 2011 Jan; 86(1):124-8. PubMed ID: 21190015 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Dong Y; Zhu YG; Smith FA; Wang Y; Chen B Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670 [TBL] [Abstract][Full Text] [Related]
15. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Wei CY; Chen TB Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966 [TBL] [Abstract][Full Text] [Related]
16. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Casado M; Anawar HM; Garcia-Sanchez A; Regina IS Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375 [No Abstract] [Full Text] [Related]
17. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549 [TBL] [Abstract][Full Text] [Related]
18. Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area. Jedynak L; Kowalska J; Harasimowicz J; Golimowski J Sci Total Environ; 2009 Jan; 407(2):945-52. PubMed ID: 18952257 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms to cope with arsenic or cadmium excess in plants. Verbruggen N; Hermans C; Schat H Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016 [TBL] [Abstract][Full Text] [Related]
20. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Smith PG; Koch I; Reimer KJ Sci Total Environ; 2008 Feb; 390(1):188-97. PubMed ID: 17976691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]