BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

783 related articles for article (PubMed ID: 19733893)

  • 1. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil.
    Vromman D; Flores-Bavestrello A; Šlejkovec Z; Lapaille S; Teixeira-Cardoso C; Briceño M; Kumar M; Martínez JP; Lutts S
    Sci Total Environ; 2011 Dec; 412-413():286-95. PubMed ID: 22051550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroponics as a valid tool to assess arsenic availability in mine soils.
    Moreno-Jiménez E; Esteban E; Fresno T; de Egea CL; Peñalosa JM
    Chemosphere; 2010 Apr; 79(5):513-7. PubMed ID: 20223499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation.
    Anderson L; Walsh MM
    Sci Total Environ; 2007 Jul; 379(2-3):263-5. PubMed ID: 17113631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of arsenic resistance in Mediterranean woody shrubs used in restoration activities.
    Moreno-Jiménez E; Peñalosa JM; Carpena-Ruiz RO; Esteban E
    Chemosphere; 2008 Mar; 71(3):466-73. PubMed ID: 18037471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration.
    Arnetoli M; Vooijs R; ten Bookum W; Galardi F; Gonnelli C; Gabbrielli R; Schat H; Verkleij JA
    Environ Pollut; 2008 Apr; 152(3):585-91. PubMed ID: 17707110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the phytoextraction potential of high biomass crop plants.
    Hernández-Allica J; Becerril JM; Garbisu C
    Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator.
    Singh N; Raj A; Khare PB; Tripathi RD; Jamil S
    Bioresour Technol; 2010 Dec; 101(23):8960-8. PubMed ID: 20655204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil.
    Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T
    Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.
    Datta R; Quispe MA; Sarkar D
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):124-8. PubMed ID: 21190015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil.
    Dong Y; Zhu YG; Smith FA; Wang Y; Chen B
    Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain).
    Casado M; Anawar HM; Garcia-Sanchez A; Regina IS
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375
    [No Abstract]   [Full Text] [Related]  

  • 17. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area.
    Jedynak L; Kowalska J; Harasimowicz J; Golimowski J
    Sci Total Environ; 2009 Jan; 407(2):945-52. PubMed ID: 18952257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus).
    Smith PG; Koch I; Reimer KJ
    Sci Total Environ; 2008 Feb; 390(1):188-97. PubMed ID: 17976691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.