These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19733975)

  • 1. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities.
    Cang L; Zhou DM; Wang QY; Wu DY
    J Hazard Mater; 2009 Dec; 172(2-3):1602-7. PubMed ID: 19733975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of simulated acid rain on soil enzyme activities in a latosol.
    Ling DJ; Huang QC; Ouyang Y
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1914-8. PubMed ID: 20701974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control.
    Cang L; Fan GP; Zhou DM; Wang QY
    Chemosphere; 2013 Feb; 90(8):2326-31. PubMed ID: 23177009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.
    Lee SH; Lee JS; Choi YJ; Kim JG
    Chemosphere; 2009 Nov; 77(8):1069-75. PubMed ID: 19786291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH.
    Zhou DM; Deng CF; Cang L; Alshawabkeh AN
    Chemosphere; 2005 Oct; 61(4):519-27. PubMed ID: 16202805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.
    Roach N; Reddy KR; Al-Hamdan AZ
    J Hazard Mater; 2009 Jun; 165(1-3):548-57. PubMed ID: 19013716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.
    Ciarkowska K; Sołek-Podwika K; Wieczorek J
    J Environ Manage; 2014 Jan; 132():250-6. PubMed ID: 24321285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of phenanthrene by soils contaminated with heavy metals.
    Gao Y; Xiong W; Ling W; Xu J
    Chemosphere; 2006 Nov; 65(8):1355-61. PubMed ID: 16735048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2007 Jun; 144(1-2):292-9. PubMed ID: 17110023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioamendment of petroleum contaminated ultisol: effect on oil content, heavy metals and pH of tropical soil.
    Udosen ED; Essien JP; Ubom RM
    J Environ Sci (China); 2001 Jan; 13(1):92-8. PubMed ID: 11590727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme Activities in Reduction of Heavy Metal Pollution from Alice Landfill Site in Eastern Cape, South Africa.
    Maphuhla NG; Lewu FB; Oyedeji OO
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of copper pollution on Trifolium repens growth and soil enzyme activities].
    Chu L; Wang Y; Ding J; Li Z; Liu D
    Ying Yong Sheng Tai Xue Bao; 2005 Dec; 16(12):2413-7. PubMed ID: 16515199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic remediation of Zn and Ni-contaminated soil.
    Kim DH; Ryu BG; Park SW; Seo CI; Baek K
    J Hazard Mater; 2009 Jun; 165(1-3):501-5. PubMed ID: 19010593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil.
    Bhattacharyya P; Tripathy S; Chakrabarti K; Chakraborty A; Banik P
    Chemosphere; 2008 Jun; 72(4):543-50. PubMed ID: 18471858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland.
    Shao X; Yang W; Wu M
    PLoS One; 2015; 10(11):e0142677. PubMed ID: 26560310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.
    Pérez-de-Mora A; Madejón E; Cabrera F; Buegger F; Fuss R; Pritsch K; Schloter M
    Sci Total Environ; 2008 Nov; 406(1-2):99-107. PubMed ID: 18768212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal.
    Ma JW; Wang FY; Huang ZH; Wang H
    J Hazard Mater; 2010 Apr; 176(1-3):715-20. PubMed ID: 20006426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution.
    Muhammad A; Wang HZ; Wu JJ; Xu JM; Xu DF
    J Environ Sci (China); 2005; 17(5):802-7. PubMed ID: 16313007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferritization treatment of copper in soil by electrokinetic remediation.
    Kimura T; Takase K; Terui N; Tanaka S
    J Hazard Mater; 2007 May; 143(3):662-7. PubMed ID: 17374444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.