BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 19734178)

  • 1. Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum.
    Kabashima Y; Kishikawa J; Kurokawa T; Sakamoto J
    J Biochem; 2009 Dec; 146(6):845-55. PubMed ID: 19734178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
    Kabus A; Niebisch A; Bott M
    Appl Environ Microbiol; 2007 Feb; 73(3):861-8. PubMed ID: 17142369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
    Koch-Koerfges A; Pfelzer N; Platzen L; Oldiges M; Bott M
    Biochim Biophys Acta; 2013 Jun; 1827(6):699-708. PubMed ID: 23416842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the enzyme expression in a respiratory chain of Corynebacterium glutamicum in a copper ion-supplemented culture medium.
    Kusumoto T; Aoyagi M; Sugiyama T; Sakamoto J
    Biosci Biotechnol Biochem; 2015; 79(2):223-9. PubMed ID: 25338939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
    Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome
    Fischer M; Falke D; Naujoks C; Sawers RG
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784883
    [No Abstract]   [Full Text] [Related]  

  • 8. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L; Wada M; Yokota A
    Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The copper-deprivation stimulon of
    Morosov X; Davoudi CF; Baumgart M; Brocker M; Bott M
    J Biol Chem; 2018 Oct; 293(40):15628-15640. PubMed ID: 30154248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D; Morgan JE; Gennis RB
    Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal expression of Mycobacterium smegmatis respiratory terminal oxidases.
    Megehee JA; Lundrigan MD
    Can J Microbiol; 2007 Mar; 53(3):459-63. PubMed ID: 17538658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
    Lindner SN; Vidaurre D; Willbold S; Schoberth SM; Wendisch VF
    Appl Environ Microbiol; 2007 Aug; 73(15):5026-33. PubMed ID: 17545325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1.
    Niebisch A; Bott M
    Arch Microbiol; 2001 Apr; 175(4):282-94. PubMed ID: 11382224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
    Koch-Koerfges A; Kabus A; Ochrombel I; Marin K; Bott M
    Biochim Biophys Acta; 2012 Feb; 1817(2):370-80. PubMed ID: 22050934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site.
    Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI
    Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum.
    Blombach B; Cramer A; Eikmanns BJ; Schreiner M
    J Mol Microbiol Biotechnol; 2009; 16(3-4):236-9. PubMed ID: 17890844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of developmental colony formation in Corynebacterium glutamicum.
    Takano H; Shimizu A; Shibosawa R; Sasaki R; Iwagaki S; Minagawa O; Yamanaka K; Miwa K; Beppu T; Ueda K
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):127-34. PubMed ID: 18696061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.