BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19734178)

  • 41. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
    Unthan S; Baumgart M; Radek A; Herbst M; Siebert D; Brühl N; Bartsch A; Bott M; Wiechert W; Marin K; Hans S; Krämer R; Seibold G; Frunzke J; Kalinowski J; Rückert C; Wendisch VF; Noack S
    Biotechnol J; 2015 Feb; 10(2):290-301. PubMed ID: 25139579
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct correlationship between proton translocation and growth yield: an analysis of the respiratory chain of Bacillus stearothermophilus.
    Sone N; Tsukita S; Sakamoto J
    J Biosci Bioeng; 1999; 87(4):495-9. PubMed ID: 16232504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry.
    Neumeyer A; Hübschmann T; Müller S; Frunzke J
    Microb Biotechnol; 2013 Mar; 6(2):157-67. PubMed ID: 23279937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-cell growth inference of
    Messelink JJ; Meyer F; Bramkamp M; Broedersz CP
    Elife; 2021 Oct; 10():. PubMed ID: 34605403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone.
    Barreiro C; González-Lavado E; Brand S; Tauch A; Martín JF
    J Bacteriol; 2013 Jun; 195(11):2707. PubMed ID: 23661687
    [No Abstract]   [Full Text] [Related]  

  • 46. The cryoEM structure of cytochrome
    Grund TN; Kabashima Y; Kusumoto T; Wu D; Welsch S; Sakamoto J; Michel H; Safarian S
    Front Chem; 2022; 10():1085463. PubMed ID: 36688035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis for safe and efficient energy conversion in a respiratory supercomplex.
    Kao WC; Ortmann de Percin Northumberland C; Cheng TC; Ortiz J; Durand A; von Loeffelholz O; Schilling O; Biniossek ML; Klaholz BP; Hunte C
    Nat Commun; 2022 Jan; 13(1):545. PubMed ID: 35087070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiolipin enhances the enzymatic activity of cytochrome bd and cytochrome bo
    Asseri AH; Godoy-Hernandez A; Goojani HG; Lill H; Sakamoto J; McMillan DGG; Bald D
    Sci Rep; 2021 Apr; 11(1):8006. PubMed ID: 33850195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Basis of Growth Inhibition by Acetate of an Adenylate Cyclase-Deficient Mutant of
    Wolf N; Bussmann M; Koch-Koerfges A; Katcharava N; Schulte J; Polen T; Hartl J; Vorholt JA; Baumgart M; Bott M
    Front Microbiol; 2020; 11():87. PubMed ID: 32117117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantification of microaerobic growth of Geobacter sulfurreducens.
    Engel CEA; Vorländer D; Biedendieck R; Krull R; Dohnt K
    PLoS One; 2020; 15(1):e0215341. PubMed ID: 31945063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytochrome
    Fischer M; Falke D; Naujoks C; Sawers RG
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784883
    [No Abstract]   [Full Text] [Related]  

  • 52. HIV-1 Tat-mediated apoptosis in human blood-retinal barrier-associated cells.
    Che X; He F; Deng Y; Xu S; Fan X; Gu P; Wang Z
    PLoS One; 2014; 9(4):e95420. PubMed ID: 24739951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
    Kabus A; Niebisch A; Bott M
    Appl Environ Microbiol; 2007 Feb; 73(3):861-8. PubMed ID: 17142369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
    Koch-Koerfges A; Pfelzer N; Platzen L; Oldiges M; Bott M
    Biochim Biophys Acta; 2013 Jun; 1827(6):699-708. PubMed ID: 23416842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring the enzyme expression in a respiratory chain of Corynebacterium glutamicum in a copper ion-supplemented culture medium.
    Kusumoto T; Aoyagi M; Sugiyama T; Sakamoto J
    Biosci Biotechnol Biochem; 2015; 79(2):223-9. PubMed ID: 25338939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum.
    Kabashima Y; Kishikawa J; Kurokawa T; Sakamoto J
    J Biochem; 2009 Dec; 146(6):845-55. PubMed ID: 19734178
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.