BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19734263)

  • 1. The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus.
    Genicot-Joncour S; Poinas A; Richard O; Potin P; Rudolph B; Kloareg B; Helbert W
    Plant Physiol; 2009 Nov; 151(3):1609-16. PubMed ID: 19734263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus.
    Lipinska AP; Collén J; Krueger-Hadfield SA; Mora T; Ficko-Blean E
    Sci Rep; 2020 Jul; 10(1):11498. PubMed ID: 32661246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose.
    Fuchs A; Romeis D; Hupfeld E; Sieber V
    J Agric Food Chem; 2024 Mar; 72(11):5816-5827. PubMed ID: 38442258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postharvest culture in the dark: An eco-friendly alternative to alkali treatment for enhancing the gel quality of kappa/iota-hybrid carrageenan from Chondrus crispus (Gigartinales, Rhodophyta).
    Villanueva RD; Hilliou L; Sousa-Pinto I
    Bioresour Technol; 2009 May; 100(9):2633-8. PubMed ID: 19138513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, identification, and characterization of d-galactose-6-sulfurylase from marine algae (Betaphycus gelatinus).
    Wang A; Islam MN; Qin X; Wang H; Peng Y; Ma C
    Carbohydr Res; 2014 Mar; 388():94-9. PubMed ID: 24632215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms.
    Lee SB; Kim JA; Lim HS
    Appl Microbiol Biotechnol; 2016 May; 100(9):4109-21. PubMed ID: 26875872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Diversity in Galactans From Red Seaweeds and Its Influence on Rheological Properties.
    Ciancia M; Matulewicz MC; Tuvikene R
    Front Plant Sci; 2020; 11():559986. PubMed ID: 33013979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis.
    Perez Recalde M; Canelón DJ; Compagnone RS; Matulewicz MC; Cerezo AS; Ciancia M
    Carbohydr Polym; 2016 Jan; 136():1370-8. PubMed ID: 26572482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfohydrolase Activity and Carrageenan Biosynthesis in Chondrus crispus (Rhodophyceae).
    Wong KF; Craigie JS
    Plant Physiol; 1978 Apr; 61(4):663-6. PubMed ID: 16660358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and thermal stability of pyruvated carrageenans from the red alga Coccotylus truncatus.
    Tuvikene R; Truus K; Robal M; Pehk T; Kailas T; Vaher M; Paalme T
    Carbohydr Res; 2009 Apr; 344(6):788-94. PubMed ID: 19269630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex sulfated galactans from hot water extracts of red seaweed Asparagopsis taxiformis comprise carrageenan and agaran structures.
    Rodríguez Sánchez RA; Saluri K; Tuvikene R; Matulewicz MC; Ciancia M
    Carbohydr Polym; 2023 Dec; 322():121314. PubMed ID: 37839829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta): Location and structural analysis.
    Estevez JM; Ciancia M; Cerezo AS
    Carbohydr Polym; 2008 Sep; 73(4):594-605. PubMed ID: 26048226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunomodulation by xylan and carrageenan-type polysaccharides from red seaweeds: Anti-inflammatory, wound healing, cytoprotective, and anticoagulant activities.
    Premarathna AD; Ahmed TAE; Rjabovs V; Hammami R; Critchley AT; Tuvikene R; Hincke MT
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129433. PubMed ID: 38232891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the structure of kappa/iota-hybrid carrageenans.
    van de Velde F; Peppelman HA; Rollema HS; Tromp RH
    Carbohydr Res; 2001 Apr; 331(3):271-83. PubMed ID: 11383897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line liquid chromatography electrospray ionization mass spectrometry for the characterization of kappa- and iota-carrageenans. Application to the hybrid iota-/nu-carrageenans.
    Antonopoulos A; Favetta P; Helbert W; Lafosse M
    Anal Chem; 2005 Jul; 77(13):4125-36. PubMed ID: 15987118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical investigation of carrageenan from the red alga Sarconema filiforme (Gigartinales, Rhodophyta) of Indian waters.
    Kumar S; Mehta GK; Prasad K; Meena R; Siddhanta AK
    Nat Prod Commun; 2011 Sep; 6(9):1327-32. PubMed ID: 21941908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-Assimilation Influences in Carrageenan Biosynthesis Genes during Ethylene-Induced Carposporogenesis in Red Seaweed
    Del Rosario-Santana D; Robaina RR; Garcia-Jimenez P
    Mar Drugs; 2022 Jun; 20(7):. PubMed ID: 35877729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of a β-porphyranase produced by the carrageenophyte red alga Chondrus crispus and implications of this unexpected activity on red algal biology.
    Manat G; Fanuel M; Jouanneau D; Jam M; Mac-Bear J; Rogniaux H; Mora T; Larocque R; Lipinska A; Czjzek M; Ropartz D; Ficko-Blean E
    J Biol Chem; 2022 Dec; 298(12):102707. PubMed ID: 36402445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Carrageenan Metabolic Pathway in Flavobacterium algicola.
    Jiang C; Zhang T; Li Q; Jiang H; Mao X
    Appl Environ Microbiol; 2022 Sep; 88(18):e0110022. PubMed ID: 36036580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate groups position determines the ionic selectivity and syneresis properties of carrageenan systems.
    Elmarhoum S; Mathieu S; Ako K; Helbert W
    Carbohydr Polym; 2023 Jan; 299():120166. PubMed ID: 36876782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.