BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19735114)

  • 1. Polypeptide nanoribbon hydrogels assembled through multiple supramolecular interactions.
    Yan Y; de Keizer A; Martens AA; Oliveira CL; Pedersen JS; de Wolf FA; Drechsler M; Cohen Stuart MA; Besseling NA
    Langmuir; 2009 Nov; 25(22):12899-908. PubMed ID: 19735114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable bacterial agglutination and motility inhibition by self-assembled glyco-nanoribbons.
    Lim YB; Park S; Lee E; Ryu JH; Yoon YR; Kim TH; Lee M
    Chem Asian J; 2007 Nov; 2(11):1363-9. PubMed ID: 17849402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable self-assembled peptide amphiphile nanostructures.
    Meng Q; Kou Y; Ma X; Liang Y; Guo L; Ni C; Liu K
    Langmuir; 2012 Mar; 28(11):5017-22. PubMed ID: 22352406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
    Zubarev ER; Sone ED; Stupp SI
    Chemistry; 2006 Sep; 12(28):7313-27. PubMed ID: 16892475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery.
    Li J; Li X; Ni X; Wang X; Li H; Leong KW
    Biomaterials; 2006 Aug; 27(22):4132-40. PubMed ID: 16584769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of peptide-amphiphile nanofibers via phospholipid inclusions.
    Paramonov SE; Jun HW; Hartgerink JD
    Biomacromolecules; 2006 Jan; 7(1):24-6. PubMed ID: 16398493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural stability of polypeptide nanofilms under extreme conditions.
    Li B; Rozas J; Haynie DT
    Biotechnol Prog; 2006; 22(1):111-7. PubMed ID: 16454500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a beta-amino acid derivative.
    Yang Z; Liang G; Ma M; Gao Y; Xu B
    Small; 2007 Apr; 3(4):558-62. PubMed ID: 17323399
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis and characterization of PCL-b-PEO-b-PCL-based nanostructured and porous hydrogels.
    Kang J; Beers KJ
    Biomacromolecules; 2006 Feb; 7(2):453-8. PubMed ID: 16471916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoresponsive hydrogel of diblock methylcellulose: formation of ribbonlike supramolecular nanostructures by self-assembly.
    Nakagawa A; Steiniger F; Richter W; Koschella A; Heinze T; Kamitakahara H
    Langmuir; 2012 Aug; 28(34):12609-18. PubMed ID: 22852550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogels prepared by self-assembly of oppositely charged globular proteins.
    Yu S; Yao P; Jiang M; Zhang G
    Biopolymers; 2006 Oct; 83(2):148-58. PubMed ID: 16718679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly.
    Kim SW; Han TH; Kim J; Gwon H; Moon HS; Kang SW; Kim SO; Kang K
    ACS Nano; 2009 May; 3(5):1085-90. PubMed ID: 19397336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent triblock copolymers based on a coiled-coil peptide motif.
    Marsden HR; Korobko AV; van Leeuwen EN; Pouget EM; Veen SJ; Sommerdijk NA; Kros A
    J Am Chem Soc; 2008 Jul; 130(29):9386-93. PubMed ID: 18582047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.