BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 19735144)

  • 1. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites.
    Bellezza F; Cipiciani A; Latterini L; Posati T; Sassi P
    Langmuir; 2009 Sep; 25(18):10918-24. PubMed ID: 19735144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interactions with nanosized hydrotalcites of different composition.
    Bellezza F; Alberani A; Posati T; Tarpani L; Latterini L; Cipiciani A
    J Inorg Biochem; 2012 Jan; 106(1):134-42. PubMed ID: 22115829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles.
    Bellezza F; Cipiciani A; Quotadamo MA
    Langmuir; 2005 Nov; 21(24):11099-104. PubMed ID: 16285777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and conformational change of myoglobin on biomimetic hydroxyapatite nanocrystals functionalized with alendronate.
    Iafisco M; Palazzo B; Falini G; Foggia MD; Bonora S; Nicolis S; Casella L; Roveri N
    Langmuir; 2008 May; 24(9):4924-30. PubMed ID: 18373380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry and electrocatalysis of myoglobin intercalated in Mg2Al-Cl layered double hydroxide and ionic liquid composite material.
    Zhan T; Guo Y; Xu L; Zhang W; Sun W; Hou W
    Talanta; 2012 May; 94():189-94. PubMed ID: 22608434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of immobilization onto aluminum hydroxide particles on the thermally induced conformational behavior of three model proteins.
    Bai S; Dong A
    Int J Biol Macromol; 2009 Jul; 45(1):80-5. PubMed ID: 19397921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.
    Zhang H; Lu H; Hu N
    J Phys Chem B; 2006 Feb; 110(5):2171-9. PubMed ID: 16471801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin.
    Yang HJ; Matsui T; Ozaki S; Kato S; Ueno T; Phillips GN; Fukuzumi S; Watanabe Y
    Biochemistry; 2003 Sep; 42(34):10174-81. PubMed ID: 12939145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, stability, and activity of myoglobin adsorbed onto phosphate-grafted zirconia nanoparticles.
    Bellezza F; Cipiciani A; Quotadamo MA; Cinelli S; Onori G; Tacchi S
    Langmuir; 2007 Dec; 23(26):13007-12. PubMed ID: 18020378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surface features on sulfur dioxide adsorption on calcined NiAl hydrotalcite-like compounds.
    Zhao L; Li X; Quan X; Chen G
    Environ Sci Technol; 2011 Jun; 45(12):5373-9. PubMed ID: 21609013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meso-unsubstituted iron corrole in hemoproteins: remarkable differences in effects on peroxidase activities between myoglobin and horseradish peroxidase.
    Matsuo T; Hayashi A; Abe M; Matsuda T; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2009 Oct; 131(42):15124-5. PubMed ID: 19810701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the adsorption of tetracycline by calcined magnesium-aluminum hydrotalcites.
    Xu Z; Fan J; Zheng S; Ma F; Yin D
    J Environ Qual; 2009; 38(3):1302-10. PubMed ID: 19398528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights into the Effects of Surface Functionalization on the Peroxidase Activity of Cytochrome c Adsorbed on Silica Nanoparticles.
    Tarpani L; Bellezza F; Sassi P; Gambucci M; Cipiciani A; Latterini L
    J Phys Chem B; 2019 Mar; 123(11):2567-2575. PubMed ID: 30807173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iron hydroxide moiety in the 1.35 A resolution structure of hydrogen peroxide derived myoglobin compound II at pH 5.2.
    Hersleth HP; Dalhus B; Görbitz CH; Andersson KK
    J Biol Inorg Chem; 2002 Mar; 7(3):299-304. PubMed ID: 11935353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron hemiporphycene as a functional prosthetic group for myoglobin.
    Neya S; Imai K; Hori H; Ishikawa H; Ishimori K; Okuno D; Nagatomo S; Hoshino T; Hata M; Funasaki N
    Inorg Chem; 2003 Mar; 42(5):1456-61. PubMed ID: 12611510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical nitration of myoglobin at tyrosine 103: structure and stability.
    Gómez-Mingot M; Alcaraz LA; Heptinstall J; Donaire A; Piccioli M; Montiel V; Iniesta J
    Arch Biochem Biophys; 2013 Jan; 529(1):26-33. PubMed ID: 23200748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.