These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19735299)

  • 1. Next generation sequencing of microbial transcriptomes: challenges and opportunities.
    van Vliet AH
    FEMS Microbiol Lett; 2010 Jan; 302(1):1-7. PubMed ID: 19735299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of RNA-seq to reveal the transcript profile in bacteria.
    Pinto AC; Melo-Barbosa HP; Miyoshi A; Silva A; Azevedo V
    Genet Mol Res; 2011; 10(3):1707-18. PubMed ID: 21863565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying bacterial transcriptomes using RNA-seq.
    Croucher NJ; Thomson NR
    Curr Opin Microbiol; 2010 Oct; 13(5):619-24. PubMed ID: 20888288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Borrelia burgdorferi Transcriptome Analysis by RNA-Sequencing.
    Lybecker M; Henderson KC
    Methods Mol Biol; 2018; 1690():127-136. PubMed ID: 29032542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies.
    Barquist L; Vogel J
    Annu Rev Genet; 2015; 49():367-94. PubMed ID: 26473381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease.
    Raghavachari N; Barb J; Yang Y; Liu P; Woodhouse K; Levy D; O'Donnell CJ; Munson PJ; Kato GJ
    BMC Med Genomics; 2012 Jun; 5():28. PubMed ID: 22747986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo assembly of bacterial transcriptomes from RNA-seq data.
    Tjaden B
    Genome Biol; 2015 Jan; 16(1):1. PubMed ID: 25583448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis using next-generation sequencing.
    Mutz KO; Heilkenbrinker A; Lönne M; Walter JG; Stahl F
    Curr Opin Biotechnol; 2013 Feb; 24(1):22-30. PubMed ID: 23020966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of Staphylococcus aureus using microarray and advanced next-generation RNA-seq technologies.
    Lei T; Becker A; Ji Y
    Methods Mol Biol; 2014; 1085():213-29. PubMed ID: 24085699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys.
    Su Z; Li Z; Chen T; Li QZ; Fang H; Ding D; Ge W; Ning B; Hong H; Perkins RG; Tong W; Shi L
    Chem Res Toxicol; 2011 Sep; 24(9):1486-93. PubMed ID: 21834575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of tiling arrays and their application to bacterial transcriptome analysis.
    Akama T; Nakamura K; Tanoue A; Suzuki K
    Methods Mol Biol; 2013; 1067():23-34. PubMed ID: 23975783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the study of microbial transcriptomes using second- and third-generation sequencing technologies.
    Choi SC
    J Microbiol; 2016 Aug; 54(8):527-36. PubMed ID: 27480632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.
    Lahiry P; Lee LJ; Frey BJ; Rupar CA; Siu VM; Blencowe BJ; Hegele RA
    PLoS One; 2011; 6(9):e25400. PubMed ID: 21980446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.
    Sîrbu A; Kerr G; Crane M; Ruskin HJ
    PLoS One; 2012; 7(12):e50986. PubMed ID: 23251411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq and Expression Arrays: Selection Guidelines for Genome-Wide Expression Profiling.
    Minnier J; Pennock ND; Guo Q; Schedin P; Harrington CA
    Methods Mol Biol; 2018; 1783():7-33. PubMed ID: 29767356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq technology and its application in fish transcriptomics.
    Qian X; Ba Y; Zhuang Q; Zhong G
    OMICS; 2014 Feb; 18(2):98-110. PubMed ID: 24380445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing.
    Wilhelm BT; Landry JR
    Methods; 2009 Jul; 48(3):249-57. PubMed ID: 19336255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing.
    Pedersen CB; Nielsen FC; Rossing M; Olsen LR
    Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq.
    Mantione KJ; Kream RM; Kuzelova H; Ptacek R; Raboch J; Samuel JM; Stefano GB
    Med Sci Monit Basic Res; 2014 Aug; 20():138-42. PubMed ID: 25149683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.