BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19735308)

  • 1. Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer.
    Cey BD; Hudson GB; Moran JE; Scanlon BR
    Ground Water; 2009; 47(5):646-59. PubMed ID: 19735308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of artificial recharge on dissolved noble gases in groundwater in California.
    Cey BD; Hudson GB; Moran JE; Scanlon BR
    Environ Sci Technol; 2008 Feb; 42(4):1017-23. PubMed ID: 18351066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air.
    Aeschbach-Hertig W; Peeters F; Beyerle U; Kipfer R
    Nature; 2000 Jun; 405(6790):1040-4. PubMed ID: 10890441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble gas excess air applied to distinguish groundwater recharge conditions.
    Ingram RG; Hiscock KM; Dennis PF
    Environ Sci Technol; 2007 Mar; 41(6):1949-55. PubMed ID: 17410789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.
    Doble RC; Simmons CT; Walker GR
    Ground Water; 2009; 47(1):129-35. PubMed ID: 18624693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.
    Clark JF; Hudson GB; Avisar D
    Environ Sci Technol; 2005 Jun; 39(11):3939-45. PubMed ID: 15984768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of recharge-induced geochemical change in a contaminated aquifer.
    McGuire JT; Long DT; Hyndman DW
    Ground Water; 2005; 43(4):518-30. PubMed ID: 16029178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paleotemperatures in the southwestern United States derived from noble gases in ground water.
    Stute M; Schlosser P; Clark JF; Broecker WS
    Science; 1992 May; 256(5059):1000-3. PubMed ID: 17795002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres.
    Papp L; Palcsu L; Major Z; Rinyu L; Tóth I
    Isotopes Environ Health Stud; 2012; 48(4):494-511. PubMed ID: 22537518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.
    Visser A; Singleton MJ; Hillegonds DJ; Velsko CA; Moran JE; Esser BK
    Rapid Commun Mass Spectrom; 2013 Nov; 27(21):2472-82. PubMed ID: 24097404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.
    Visser A; Moran JE; Hillegonds D; Singleton MJ; Kulongoski JT; Belitz K; Esser BK
    Water Res; 2016 Mar; 91():314-30. PubMed ID: 26803267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.
    Amos RT; Ulrich Mayer K
    J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical models, geochemistry and the zero-paradox noble-gas mantle.
    Ballentine CJ; Van Keken PE; Porcelli D; Hauri EH
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2611-31. PubMed ID: 12460483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH; Uliana M; Wade S
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrologic significance of carbon monoxide concentrations in ground water.
    Chapelle FH; Bradley PM
    Ground Water; 2007; 45(3):272-80. PubMed ID: 17470116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States.
    Green CT; Puckett LJ; Böhlke JK; Bekins BA; Phillips SP; Kauffman LJ; Denver JM; Johnson HM
    J Environ Qual; 2008; 37(3):994-1009. PubMed ID: 18453423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conquering the outdoors with on-site mass spectrometry.
    Mächler L; Brennwald MS; Tyroller L; Livingstone DM; Kipfer R
    Chimia (Aarau); 2014; 68(3):155-9. PubMed ID: 24801847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of recharge from floods in disconnected stream-aquifer systems.
    Vázquez-Suñé E; Capino B; Abarca E; Carrera J
    Ground Water; 2007; 45(5):579-89. PubMed ID: 17760584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vadose zone-attenuated artificial recharge for input to a ground water model.
    Nichols WE; Wurstner SK; Eslinger PW
    Ground Water; 2007; 45(4):491-8. PubMed ID: 17600580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-well degassing issues for measurements of dissolved gases in groundwater.
    Roy JW; Ryan MC
    Ground Water; 2010; 48(6):869-77. PubMed ID: 20456503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.