These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19735668)
1. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Thomé RC; Yang HM; Esteva L Math Biosci; 2010 Jan; 223(1):12-23. PubMed ID: 19735668 [TBL] [Abstract][Full Text] [Related]
2. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Esteva L; Mo Yang H Math Biosci; 2005 Dec; 198(2):132-47. PubMed ID: 16125739 [TBL] [Abstract][Full Text] [Related]
3. Optimal control of gypsy moth populations. Whittle A; Lenhart S; White KA Bull Math Biol; 2008 Feb; 70(2):398-411. PubMed ID: 17909919 [TBL] [Abstract][Full Text] [Related]
4. Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Luz PM; Codeço CT; Medlock J; Struchiner CJ; Valle D; Galvani AP Epidemiol Infect; 2009 Aug; 137(8):1203-15. PubMed ID: 19134235 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines. Mahilum MM; Ludwig M; Madon MB; Becker N J Vector Ecol; 2005 Dec; 30(2):277-83. PubMed ID: 16599163 [TBL] [Abstract][Full Text] [Related]
6. A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control. Dias WO; Wanner EF; Cardoso RT Math Biosci; 2015 Nov; 269():37-47. PubMed ID: 26362231 [TBL] [Abstract][Full Text] [Related]
7. Dengue virus and insecticide susceptibility status of Aedes aegypti mosquitoes from Belagola village, Mandya District, Karnataka state: during and post-epidemic investigations. Gokhale MD; Jacob PG; Mourya DT J Commun Dis; 2000 Dec; 32(4):247-53. PubMed ID: 11668935 [TBL] [Abstract][Full Text] [Related]
8. Synergistic efficacy of botanical blends with and without synthetic insecticides against Aedes aegypti and Culex annulirostris mosquitoes. Shaalan EA; Canyon DV; Younes MW; Abdel-Wahab H; Mansour AH J Vector Ecol; 2005 Dec; 30(2):284-8. PubMed ID: 16599164 [TBL] [Abstract][Full Text] [Related]
9. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Oléron Evans TP; Bishop SR Math Biosci; 2014 Aug; 254():6-27. PubMed ID: 24929226 [TBL] [Abstract][Full Text] [Related]
10. Effect of chemical fogging on immature Aedes mosquitoes in natural field conditions. Chua KB; Chua IL; Chua IE; Chua KH Singapore Med J; 2005 Nov; 46(11):639-44. PubMed ID: 16228097 [TBL] [Abstract][Full Text] [Related]
11. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Otero M; Solari HG; Schweigmann N Bull Math Biol; 2006 Nov; 68(8):1945-74. PubMed ID: 16832731 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Caribbean strains of Macrocyclops and Mesocyclops (Cyclopoida:Cyclopidae) as biological control tools for the dengue vector Aedes aegypti. Rawlins SC; Martinez R; Wiltshire S; Clarke D; Prabhakar P; Spinks M J Am Mosq Control Assoc; 1997 Mar; 13(1):18-23. PubMed ID: 9152870 [TBL] [Abstract][Full Text] [Related]
13. Effect of sublethal dosages of malathion on the oral susceptibility of Aedes aegypti to dengue-2 virus infection. Lee HL; Argubano RA; Ahmad R Southeast Asian J Trop Med Public Health; 1997 Sep; 28(3):664-5. PubMed ID: 9561626 [No Abstract] [Full Text] [Related]
14. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Coutinho FA; Burattini MN; Lopez LF; Massad E Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019 [TBL] [Abstract][Full Text] [Related]
15. Do herbicide treatments reduce the sensitivity of mosquito larvae to insecticides? Boyer S; Sérandour J; Lempérière G; Raveton M; Ravanel P Chemosphere; 2006 Oct; 65(4):721-4. PubMed ID: 16574189 [TBL] [Abstract][Full Text] [Related]
16. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Barrera R; Amador M; Diaz A; Smith J; Munoz-Jordan JL; Rosario Y Med Vet Entomol; 2008 Mar; 22(1):62-9. PubMed ID: 18380655 [TBL] [Abstract][Full Text] [Related]
17. The use of dragonfly nymphs in the control of Aedes aegypti. Sebastian A; Thu MM; Kyaw M; Sein MM Southeast Asian J Trop Med Public Health; 1980 Mar; 11(1):104-7. PubMed ID: 6447358 [TBL] [Abstract][Full Text] [Related]
18. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Strickman D; Kittayapong P Am J Trop Med Hyg; 2003 Feb; 68(2):209-17. PubMed ID: 12641413 [TBL] [Abstract][Full Text] [Related]
19. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Schraiber JG; Kaczmarczyk AN; Kwok R; Park M; Silverstein R; Rutaganira FU; Aggarwal T; Schwemmer MA; Hom CL; Grosberg RK; Schreiber SJ J Theor Biol; 2012 Mar; 297():26-32. PubMed ID: 22192469 [TBL] [Abstract][Full Text] [Related]
20. Emergency vector control in a DENV-2 outbreak in 2002 in Pingtung City, Pingtung County, Taiwan. Teng HJ; Chen TJ; Tsai SF; Lin CP; Chiou HY; Lin MC; Yang SY; Lee YW; Kang CC; Hsu HC; Chang NT Jpn J Infect Dis; 2007 Sep; 60(5):271-9. PubMed ID: 17881866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]