These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19737086)

  • 1. Nuclear redox signaling.
    Lukosz M; Jakob S; Büchner N; Zschauer TC; Altschmied J; Haendeler J
    Antioxid Redox Signal; 2010 Mar; 12(6):713-42. PubMed ID: 19737086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus.
    Kabe Y; Ando K; Hirao S; Yoshida M; Handa H
    Antioxid Redox Signal; 2005; 7(3-4):395-403. PubMed ID: 15706086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of cellular activation.
    Nakamura H; Nakamura K; Yodoi J
    Annu Rev Immunol; 1997; 15():351-69. PubMed ID: 9143692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation.
    Wei SJ; Botero A; Hirota K; Bradbury CM; Markovina S; Laszlo A; Spitz DR; Goswami PC; Yodoi J; Gius D
    Cancer Res; 2000 Dec; 60(23):6688-95. PubMed ID: 11118054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox control of cell death.
    Ueda S; Masutani H; Nakamura H; Tanaka T; Ueno M; Yodoi J
    Antioxid Redox Signal; 2002 Jun; 4(3):405-14. PubMed ID: 12215208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling.
    Hanschmann EM; Godoy JR; Berndt C; Hudemann C; Lillig CH
    Antioxid Redox Signal; 2013 Nov; 19(13):1539-605. PubMed ID: 23397885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of human thioredoxin network.
    Kondo N; Nakamura H; Masutani H; Yodoi J
    Antioxid Redox Signal; 2006; 8(9-10):1881-90. PubMed ID: 16987040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of redox potential and reactive oxygen species in stress signaling.
    Adler V; Yin Z; Tew KD; Ronai Z
    Oncogene; 1999 Nov; 18(45):6104-11. PubMed ID: 10557101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin and protein kinases in redox signaling.
    Fujino G; Noguchi T; Takeda K; Ichijo H
    Semin Cancer Biol; 2006 Dec; 16(6):427-35. PubMed ID: 17081769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication.
    Shlomai J
    Antioxid Redox Signal; 2010 Nov; 13(9):1429-76. PubMed ID: 20446770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox control of cellular function by thioredoxin; a new therapeutic direction in host defence.
    Nishinaka Y; Nakamura H; Masutani H; Yodoi J
    Arch Immunol Ther Exp (Warsz); 2001; 49(4):285-92. PubMed ID: 11726031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling.
    Yoshihara E; Chen Z; Matsuo Y; Masutani H; Yodoi J
    Methods Enzymol; 2010; 474():67-82. PubMed ID: 20609905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox control of neural function: background, mechanisms, and significance.
    Maher P
    Antioxid Redox Signal; 2006; 8(11-12):1941-70. PubMed ID: 17034341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5.
    Shibanuma M; Mori K; Kim-Kaneyama JR; Nose K
    Antioxid Redox Signal; 2005; 7(3-4):335-47. PubMed ID: 15706082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1.
    Hansen JM; Watson WH; Jones DP
    Toxicol Sci; 2004 Nov; 82(1):308-17. PubMed ID: 15282410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures.
    Spielberger JC; Moody AD; Watson WH
    J Cell Biochem; 2008 Aug; 104(5):1879-89. PubMed ID: 18384140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells.
    Hirota K; Matsui M; Murata M; Takashima Y; Cheng FS; Itoh T; Fukuda K; Yodoi J
    Biochem Biophys Res Commun; 2000 Jul; 274(1):177-82. PubMed ID: 10903915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-regulated growth factor survival signaling.
    Woolley JF; Corcoran A; Groeger G; Landry WD; Cotter TG
    Antioxid Redox Signal; 2013 Nov; 19(15):1815-27. PubMed ID: 23198948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts.
    Dietzel L; Gläßer C; Liebers M; Hiekel S; Courtois F; Czarnecki O; Schlicke H; Zubo Y; Börner T; Mayer K; Grimm B; Pfannschmidt T
    Mol Plant; 2015 Aug; 8(8):1237-52. PubMed ID: 25778986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.