These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19737086)

  • 21. Redox regulation of nuclear post-translational modifications during NF-kappaB activation.
    Gloire G; Piette J
    Antioxid Redox Signal; 2009 Sep; 11(9):2209-22. PubMed ID: 19203223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of apoptosis signal-regulating kinase 1 in redox signaling.
    Katagiri K; Matsuzawa A; Ichijo H
    Methods Enzymol; 2010; 474():277-88. PubMed ID: 20609916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion.
    Chiarugi P; Pani G; Giannoni E; Taddei L; Colavitti R; Raugei G; Symons M; Borrello S; Galeotti T; Ramponi G
    J Cell Biol; 2003 Jun; 161(5):933-44. PubMed ID: 12796479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4.
    Goy C; Czypiorski P; Altschmied J; Jakob S; Rabanter LL; Brewer AC; Ale-Agha N; Dyballa-Rukes N; Shah AM; Haendeler J
    Exp Gerontol; 2014 Aug; 56():45-52. PubMed ID: 24632182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox-dependent control of FOXO/DAF-16 by transportin-1.
    Putker M; Madl T; Vos HR; de Ruiter H; Visscher M; van den Berg MC; Kaplan M; Korswagen HC; Boelens R; Vermeulen M; Burgering BM; Dansen TB
    Mol Cell; 2013 Feb; 49(4):730-42. PubMed ID: 23333309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases.
    Andreadou I; Efentakis P; Frenis K; Daiber A; Schulz R
    Basic Res Cardiol; 2021 Jul; 116(1):44. PubMed ID: 34275052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells.
    Marchal C; Delorme-Hinoux V; Bariat L; Siala W; Belin C; Saez-Vasquez J; Riondet C; Reichheld JP
    Mol Plant; 2014 Jan; 7(1):30-44. PubMed ID: 24253198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The redox regulation of PI 3-kinase-dependent signaling.
    Leslie NR
    Antioxid Redox Signal; 2006; 8(9-10):1765-74. PubMed ID: 16987030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localizing NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Sci STKE; 2006 Aug; 2006(349):re8. PubMed ID: 16926363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thioredoxin: a key regulator of cardiovascular homeostasis.
    Yamawaki H; Haendeler J; Berk BC
    Circ Res; 2003 Nov; 93(11):1029-33. PubMed ID: 14645133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of redox conditions in the nucleus.
    Go YM; Pohl J; Jones DP
    Methods Mol Biol; 2009; 464():303-17. PubMed ID: 18951192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulatory mechanisms of cellular signal transduction.
    Gabbita SP; Robinson KA; Stewart CA; Floyd RA; Hensley K
    Arch Biochem Biophys; 2000 Apr; 376(1):1-13. PubMed ID: 10729185
    [No Abstract]   [Full Text] [Related]  

  • 37. Activation of nuclear factor-kappa b transcriptional activity in airway epithelial cells by thioredoxin but not by N-acetyl-cysteine and glutathione.
    Harper R; Wu K; Chang MM; Yoneda K; Pan R; Reddy SP; Wu R
    Am J Respir Cell Mol Biol; 2001 Aug; 25(2):178-85. PubMed ID: 11509327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway.
    Pantano C; Reynaert NL; van der Vliet A; Janssen-Heininger YM
    Antioxid Redox Signal; 2006; 8(9-10):1791-806. PubMed ID: 16987032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ROS signaling loops - production, perception, regulation.
    Wrzaczek M; Brosché M; Kangasjärvi J
    Curr Opin Plant Biol; 2013 Oct; 16(5):575-82. PubMed ID: 23876676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol Based Redox Signaling in Plant Nucleus.
    Martins L; Trujillo-Hernandez JA; Reichheld JP
    Front Plant Sci; 2018; 9():705. PubMed ID: 29892308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.