BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 19737088)

  • 1. Redox control of vascular smooth muscle migration.
    San Martín A; Griendling KK
    Antioxid Redox Signal; 2010 Mar; 12(5):625-40. PubMed ID: 19737088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization.
    Datla SR; McGrail DJ; Vukelic S; Huff LP; Lyle AN; Pounkova L; Lee M; Seidel-Rogol B; Khalil MK; Hilenski LL; Terada LS; Dawson MR; Lassègue B; Griendling KK
    Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H945-57. PubMed ID: 25063792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Lonomia obliqua Venom on Vascular Smooth Muscle Cells: Contribution of NADPH Oxidase-Derived Reactive Oxygen Species.
    Moraes JA; Rodrigues G; Nascimento-Silva V; Renovato-Martins M; Berger M; Guimarães JA; Barja-Fidalgo C
    Toxins (Basel); 2017 Nov; 9(11):. PubMed ID: 29112156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of vascular smooth muscle cell migration.
    Gerthoffer WT
    Circ Res; 2007 Mar; 100(5):607-21. PubMed ID: 17363707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis.
    Vendrov AE; Sumida A; Canugovi C; Lozhkin A; Hayami T; Madamanchi NR; Runge MS
    Redox Biol; 2019 Feb; 21():101063. PubMed ID: 30576919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells.
    Lyle AN; Deshpande NN; Taniyama Y; Seidel-Rogol B; Pounkova L; Du P; Papaharalambus C; Lassègue B; Griendling KK
    Circ Res; 2009 Jul; 105(3):249-59. PubMed ID: 19574552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing our IQ of vascular smooth muscle cell migration with IQGAP1. Focus on "IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury".
    Autieri MV
    Am J Physiol Cell Physiol; 2013 Sep; 305(6):C579-80. PubMed ID: 23657571
    [No Abstract]   [Full Text] [Related]  

  • 8. Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway.
    Sun HJ; Zhao MX; Ren XS; Liu TY; Chen Q; Li YH; Kang YM; Wang JJ; Zhu GQ
    Antioxid Redox Signal; 2016 Jun; 24(18):1045-57. PubMed ID: 26952533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Move on!: smooth muscle cell motility paired down.
    Jones PL
    Circ Res; 2007 Mar; 100(6):757-60. PubMed ID: 17395880
    [No Abstract]   [Full Text] [Related]  

  • 10. Reactive oxygen species signaling in vascular smooth muscle cells.
    Clempus RE; Griendling KK
    Cardiovasc Res; 2006 Jul; 71(2):216-25. PubMed ID: 16616906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox control of vascular smooth muscle cell function and plasticity.
    Durgin BG; Straub AC
    Lab Invest; 2018 Oct; 98(10):1254-1262. PubMed ID: 29463879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling.
    Trebak M; Ginnan R; Singer HA; Jourd'heuil D
    Antioxid Redox Signal; 2010 Mar; 12(5):657-74. PubMed ID: 19719386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rad GTPase attenuates vascular lesion formation by inhibition of vascular smooth muscle cell migration.
    Fu M; Zhang J; Tseng YH; Cui T; Zhu X; Xiao Y; Mou Y; De Leon H; Chang MM; Hamamori Y; Kahn CR; Chen YE
    Circulation; 2005 Mar; 111(8):1071-7. PubMed ID: 15710763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of GMFγ by c-Abl Coordinates Lamellipodial and Focal Adhesion Dynamics to Regulate Airway Smooth Muscle Cell Migration.
    Gerlach BD; Tubbesing K; Liao G; Rezey AC; Wang R; Barroso M; Tang DD
    Am J Respir Cell Mol Biol; 2019 Aug; 61(2):219-231. PubMed ID: 30811945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression.
    Tsai MH; Lee CW; Hsu LF; Li SY; Chiang YC; Lee MH; Chen CH; Liang HF; How JM; Chang PJ; Wu CM; Lee IT
    Redox Biol; 2017 Aug; 12():377-388. PubMed ID: 28292711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration.
    Tang DD; Gerlach BD
    Respir Res; 2017 Apr; 18(1):54. PubMed ID: 28390425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nuclear receptor NOR-1 modulates redox homeostasis in human vascular smooth muscle cells.
    Alonso J; Cañes L; García-Redondo AB; de Frutos PG; Rodríguez C; Martínez-González J
    J Mol Cell Cardiol; 2018 Sep; 122():23-33. PubMed ID: 30096407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II, focal adhesion kinase, and PRX1 enhance smooth muscle expression of lipoma preferred partner and its newly identified binding partner palladin to promote cell migration.
    Jin L; Kern MJ; Otey CA; Wamhoff BR; Somlyo AV
    Circ Res; 2007 Mar; 100(6):817-25. PubMed ID: 17322171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.
    Ashino T; Yamamoto M; Yoshida T; Numazawa S
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):760-8. PubMed ID: 23413426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase 4: walking the walk with Poldip2.
    Miller FJ
    Circ Res; 2009 Jul; 105(3):209-10. PubMed ID: 19644055
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.