BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19737408)

  • 41. Strategies for measuring evolutionary conservation of RNA secondary structures.
    Gruber AR; Bernhart SH; Hofacker IL; Washietl S
    BMC Bioinformatics; 2008 Feb; 9():122. PubMed ID: 18302738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of transcribed protein coding sequence remnants within lincRNAs.
    Talyan S; Andrade-Navarro MA; Muro EM
    Nucleic Acids Res; 2018 Sep; 46(17):8720-8729. PubMed ID: 29986053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstruction of ancestral protein sequences and its applications.
    Cai W; Pei J; Grishin NV
    BMC Evol Biol; 2004 Sep; 4():33. PubMed ID: 15377393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts.
    Schneider HW; Raiol T; Brigido MM; Walter MEMT; Stadler PF
    BMC Genomics; 2017 Oct; 18(1):804. PubMed ID: 29047334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aligning Protein-Coding Nucleotide Sequences with MACSE.
    Ranwez V; Chantret N; Delsuc F
    Methods Mol Biol; 2021; 2231():51-70. PubMed ID: 33289886
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How to usefully compare homologous plant genes and chromosomes as DNA sequences.
    Lyons E; Freeling M
    Plant J; 2008 Feb; 53(4):661-73. PubMed ID: 18269575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Eulerian path approach to global multiple alignment for DNA sequences.
    Zhang Y; Waterman MS
    J Comput Biol; 2003; 10(6):803-19. PubMed ID: 14980012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ancient evolutionary signals of protein-coding sequences allow the discovery of new genes in the Drosophila melanogaster genome.
    Casimiro-Soriguer CS; Rubio A; Jimenez J; Pérez-Pulido AJ
    BMC Genomics; 2020 Mar; 21(1):210. PubMed ID: 32138644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PROMALS web server for accurate multiple protein sequence alignments.
    Pei J; Kim BH; Tang M; Grishin NV
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W649-52. PubMed ID: 17452345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using shared genomic synteny and shared protein functions to enhance the identification of orthologous gene pairs.
    Zheng XH; Lu F; Wang ZY; Zhong F; Hoover J; Mural R
    Bioinformatics; 2005 Mar; 21(6):703-10. PubMed ID: 15458983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational prediction of novel non-coding RNAs in Arabidopsis thaliana.
    Song D; Yang Y; Yu B; Zheng B; Deng Z; Lu BL; Chen X; Jiang T
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S36. PubMed ID: 19208137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs.
    Livny J; Teonadi H; Livny M; Waldor MK
    PLoS One; 2008 Sep; 3(9):e3197. PubMed ID: 18787707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BLAST and FASTA similarity searching for multiple sequence alignment.
    Pearson WR
    Methods Mol Biol; 2014; 1079():75-101. PubMed ID: 24170396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accurate anchoring alignment of divergent sequences.
    Huang W; Umbach DM; Li L
    Bioinformatics; 2006 Jan; 22(1):29-34. PubMed ID: 16301203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enrichment of regulatory signals in conserved non-coding genomic sequence.
    Levy S; Hannenhalli S; Workman C
    Bioinformatics; 2001 Oct; 17(10):871-7. PubMed ID: 11673231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenomic identification of regulatory sequences in bacteria: an analysis of statistical power and an application to Borrelia burgdorferi sensu lato.
    Martin CL; Sukarna TY; Akther S; Ramrattan G; Pagan P; Di L; Mongodin EF; Fraser CM; Schutzer SE; Luft BJ; Casjens SR; Qiu WG
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications.
    Sbisà E; Tanzariello F; Reyes A; Pesole G; Saccone C
    Gene; 1997 Dec; 205(1-2):125-40. PubMed ID: 9461386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Whole-Genome Alignment.
    Dewey CN
    Methods Mol Biol; 2019; 1910():121-147. PubMed ID: 31278663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.