These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 1973777)
61. A role for the sarcolemmal Na(+)/H(+) exchanger in the slow force response to myocardial stretch. Kentish JC Circ Res; 1999 Oct; 85(8):658-60. PubMed ID: 10521237 [No Abstract] [Full Text] [Related]
63. A rise in intracellular sodium would seem to predispose the heart to the calcium paradox. Chapman Ra J Mol Cell Cardiol; 1990 May; 22(5):503-5. PubMed ID: 2167385 [No Abstract] [Full Text] [Related]
64. Effects of NCX1 antisense oligodeoxynucleotides on cardiac myocytes and primary neurons in culture. Bland KS; Takahashi K; Islam S; Michaelis ML Ann N Y Acad Sci; 1996 Apr; 779():119-20. PubMed ID: 8659818 [No Abstract] [Full Text] [Related]
65. A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Sperelakis N; Schneider JA Am J Cardiol; 1976 Jun; 37(7):1079-85. PubMed ID: 1274870 [No Abstract] [Full Text] [Related]
66. Inhibitors of sodium-calcium exchange: identification and development of probes of transport activity. Kaczorowski GJ; Slaughter RS; King VF; Garcia ML Biochim Biophys Acta; 1989 May; 988(2):287-302. PubMed ID: 2655709 [No Abstract] [Full Text] [Related]
67. Regulation of intracellular Ca2+ in the heart during diabetes. Pierce GN; Russell JC Cardiovasc Res; 1997 Apr; 34(1):41-7. PubMed ID: 9217871 [TBL] [Abstract][Full Text] [Related]
69. Characterization of monoclonal antibodies cross-reacting with myocardial and retinal sodium-calcium exchange proteins. Porzig H Ann N Y Acad Sci; 1991; 639():202-9. PubMed ID: 1723867 [No Abstract] [Full Text] [Related]
70. Sodium withdrawal contractures in tonic skeletal muscle fibers of the frog. Muñiz J; Huerta M; Marin JL; Vásquez C Ann N Y Acad Sci; 1991; 639():573-5. PubMed ID: 1785886 [No Abstract] [Full Text] [Related]
71. Functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in the failing human heart. Flesch M; Pütz F; Schwinger RH; Böhm M Ann N Y Acad Sci; 1996 Apr; 779():539-42. PubMed ID: 8659874 [No Abstract] [Full Text] [Related]
72. Abnormal mechanical function in diabetes: relation to myocardial calcium handling. Schaffer SW; Mozaffari M Coron Artery Dis; 1996 Feb; 7(2):109-15. PubMed ID: 8813441 [No Abstract] [Full Text] [Related]
73. Na+/H+ exchange and regulation of intracellular Ca2+. Karmazyn M; Moffat MP Cardiovasc Res; 1993 Nov; 27(11):2079-80. PubMed ID: 8287423 [No Abstract] [Full Text] [Related]
74. What mechanisms are involved in Ca2+ homeostasis in hair cells? Chabbert C; Sans A; Lehouelleur J Ann N Y Acad Sci; 1996 Apr; 779():397-9. PubMed ID: 8659854 [No Abstract] [Full Text] [Related]
75. Immunohistochemical localization of the cardiac sodium-calcium exchange protein in the inner ear. Mancini PM; Santi PA Ann N Y Acad Sci; 1996 Apr; 779():400-3. PubMed ID: 8659855 [No Abstract] [Full Text] [Related]
76. Initial characterization of the feline sodium-calcium exchanger gene. Barnes KV; Dawson MM; Menick DR Ann N Y Acad Sci; 1996 Apr; 779():121-5. PubMed ID: 8659819 [No Abstract] [Full Text] [Related]
77. Neuron-specific and state-specific differences in calcium regulation. Their role in the development of neuronal architecture. Mills LR Ann N Y Acad Sci; 1991; 639():312-24. PubMed ID: 1785857 [No Abstract] [Full Text] [Related]
78. Immunocytochemical localization of sodium-calcium exchanger in canine nephron. Bourdeau JE; Taylor AN; Iacopino AM J Am Soc Nephrol; 1993 Jul; 4(1):105-10. PubMed ID: 8400062 [TBL] [Abstract][Full Text] [Related]